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Abstract

The Efficient Market Hypothesis states that stock market prices reflect all avail-
able information, and thus cannot be predicted; however, this hypothesis long been
in question. A large volume of research has attempted to predict the stock mar-
ket, but with varying levels of success and practicability to investors. Following
advances in sentiment analysis, time series analysis, and increased social media us-
age, I utilise 9M collected tweets and stock price data from 4,612 stocks in the tasks
of stock price and trend prediction. A range of machine learning (ML) models are
pitted against traditional models such as ARIMA and exponential smoothing. The
results are largely consistent with the EMH, however impressive trend prediction
accuracies of 58.1% and 73.9% are achieved by the ML models at the monthly
and quarterly horizons. The findings highlight the potential power of social media
data, and reaffirm the conventional wisdom that simpler, statistical models tend to
outperform complex machine learning models.
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Chapter 1

Introduction

Predicting the stock market is a problem with both practical and theoretical benefit.
Practically, investors could make better decisions with lower risk, leading to financial
gain. Theoretically, this has long been considered a challenging problem, and many
researchers have (without widespread consensus) attempted to address the question of
whether prediction is even possible. At the heart of the issue is the Efficient Market
Hypothesis (EMH), which asserts that stock prices reflect all available information that
is relevant to them, and thus react only to new information (Fama et al. 1969; Malkiel
1989) . An implication of this is that it is impossible to utilise present information to
predict future prices, because market prices would already reflect all available infor-
mation – private or otherwise.

Despite these theories, a great number of researchers and financial analysts have
attempted to predict the stock market. Approaches to this effect are usually divided
into two categories: technical analysis, which makes use of past stock prices, trading
volume, and other market data; and fundamental analysis, which aims to determine the
intrinsic value of companies in question (which may differ from the stock price) using,
for instance, the company’s financial statements and considerations of the economy as
a whole.

Since the early 2000s, concomitantly with the growth of the World Wide Web, a
third category of sentiment analysis has gained interest as an additional approach to
predicting stock prices. Sentiment analysis is a natural language technique whereby
the sentiment of text is determined, often by classifying text as positive or negative
(and sometimes additionally ‘neutral’). When applied to text written by traders, market
sentiment can be ascertained. However, it remains an open question as to whether this
has predictive value for stock prices. Early researchers utilised forums and message
boards frequented by traders, and answered this question in the negative (Tumarkin and
Whitelaw 2001; Antweiler and Frank 2004). However, the rise of social media websites
such as Twitter have led to digital communication on an unprecedented scale , and
more optimistic research has emerged supporting the predictive power of social media
for book sales (Gruhl et al. 2005), box-office revenues (Asur and Huberman 2010),
elections (Tumasjan et al. 2010), and stock market prices (Gilbert and Karahalios 2010;
Bollen, Mao, and Zeng 2011).
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Machine learning (ML) has seen great advancements in the 21st century, particu-
larly in the fields of computer vision (Taigman et al. 2014), artificial intelligence (Silver
et al. 2016), and, pertinently, natural language processing (Hannun et al. 2014; Devlin
et al. 2018): a number of ML models now outperform humans in a range of language
understanding tasks (Wang et al. 2019). Sentiment analysis has also improved dra-
matically in the last decade: binary classification (‘positive’ or ‘negative’) accuracy on
a corpus of 215,154 labelled English phrases rose from 85.4% in 2013 (Socher et al.
2013) to 97.5% accuracy in 2019 (Jiang et al. 2019).

Machine learning has also more recently been leveraged for the tasks of time se-
ries forecasting (Fan et al. 2019; Lim, Arik, et al. 2019) and classification (Lines, S.
Taylor, and Bagnall 2016; Ismail Fawaz et al. 2020). Traditionally, statistical models
have dominated in these tasks (Makridakis and Hibon 2000). However, with increased
computing power and data, ML approaches have gained some traction.

Building on these advances, I apply ML techniques and state-of-the-art sentiment
analysis to the task of short–medium term stock market prediction using tweets and
stock prices. With this, I aim to produce practicable models to guide investments, test
the EMH, and investigate whether ML can now exceed the performance of dominant
statistical models.

1.1 Structure
The remainder of this report shall be structured as follows. Chapter 2 introduces the
necessary theory and provides an overview of the relevant literature. Chapter 3 then
defines the problem to be solved mathematically. Chapter 4 describes the data collected
to conduct this project, and Chapter 5 describes and explains the methods applied with
the data to the tasks of stock prediction. Chapter 6 details the conducted experiments
and discusses the results. Finally, Chapter 7 summarises the work, draws conclusions,
and suggests ideas for future work in the area.
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Chapter 2

Background

2.1 Theory
In this section, I provide a brief overview of the concepts and background knowledge
required to understand this work. Note that this is limited only to the concepts which
are relevant.

2.1.1 Machine learning fundamentals
Regression is the task of predicting a numerical value (output variable) given a set
of input variables. Linear regression models this as a linear function of the input
variables, �̂� = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . + 𝛽𝑛𝑥𝑛; the error of this model is the difference
from the true value, 𝜖 = 𝑦− �̂�.

Classification is the task of assigning a label to given input data. In binary classi-
fication, data is assigned to one of two classes (usually with labels of 0 and 1).

A neural network is a machine learning model inspired by human biology, com-
prising nodes arranged in layers with weighted connections between layers, and acti-
vation functions which determine the response of a node given its input connections. A
recurrent neural network (RNN) involves feedback connections where outputs of the
model are fed back into itself. A convolutional neural network (CNN) is a network in
which convolutional layers perform discrete convolutions in 1D, 2D, or 3D space over
their input. Noriega (2005) provide an introduction to neural networks, while Lim and
Zohren (2021) describes recurrent and convolutional neural networks in more detail in
the specific context of time series forecasting (defined below).

Supervised machine learning involves training models by providing training ex-
amples of inputs and outputs. In evaluating a model’s performance, data can be divided
into a training set and test set, where the model is given both input and output from
the training set, but only input from the test set; its outputs on the test set can then be
scored against the true outputs.
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2.1.2 Time series
A time series is a series of data-points in time, 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛 where 𝑥𝑖 ∈ R.

A time series is said to be stationary if its statistical parameters, such as mean and
variance, do not change with time (Hyndman and Athanasopoulos 2018). Time series
may have a trend, an increase or decrease in the long-term, or seasonality, patterns in
the time series of a fixed (and known) frequency, such as annually.

Time series forecasting refers to predicting future values of a time series. The
forecasting horizon is the length of time into the future that the forecast is for. For
instance, a next-day forecast has a forecasting horizon of one day. Predicting future
values for a range of forecasting horizons is known as multi-horizon forecasting.

Time series classification refers to assigning a label to a given time series. Many
problems can be framed as a time series classification task, such as speech recognition
(labels are words/phonemes being spoken); electrocardiogram diagnosis (labels are the
binary presence of a heart condition); and stock prediction (labels are whether the stock
price is expected to increase or decrease).

2.1.3 Stock market fundamentals
In order to allow traders to buy and sell shares of stock in a company, the stock must
be listed on a stock exchange. The largest stock exchanges in the world1 are the New
York Stock Exchange (NYSE) and Nasdaq.

The overall performance of the stock market is often tracked by investors via stock
indices, which are aggregations of a selected group of stocks with some form of
weighting applied to each stock. Stock indices are generally treated like stocks, i.e.
their price is tracked over time, though they cannot be bought in the same way2. Two
of the most well-known stock indices in the English-speaking world are the Dow Jones
Industrial Average (DJIA), which tracks 30 large companies selected by a committee;
and the Standard & Poor’s 500 (S&P 500), which tracks 500 large companies, also
selected by a committee.

Stock market prediction is a loosely defined term, which refers to predicting some
aspect of a stock, stocks, or the market as a whole — most commonly price or trend
(though e.g. volatility is also sometimes the object of prediction). I divide this more
specifically into stock price prediction, where the aim is to predict actual values of
stock prices; and stock trend prediction, where the aim is to predict the direction of
movement of a stock’s price, such as ‘up’, ‘down’, or sometimes ‘flat’ (often defined as
an increase or decrease within some small threshold). Throughout this work, I employ
‘stock market prediction’ as an umbrella term encompassing both of these tasks.

2.1.4 Sentiment analysis
As noted in the introduction, sentiment analysis is the task of determining the sentiment
of text. There are a number of different approaches to the task of sentiment analysis.
One of the simplest involves the use of a sentiment lexicon, where sentiment values

1By market capitalization,
∑

all stocks on exchange stock price× shares owned by investors
2It is possible to invest in the stocks tracked by a stock index through the use of an index fund
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of a number of words are explicitly recorded — e.g. ‘great’ may have a strong positive
sentiment value. This can be used directly in a simplistic manner to compute the senti-
ment of an entire sentence or document (e.g. by summing or averaging the sentiments
of words which are in the sentiment lexicon).

Some sentiment analysis approaches associate sentiments with ‘aspects’ extracted
from the text — e.g. in “the prospects of Apple are good, but the economy is bad”,
‘Apple’ and ‘economy’ may be aspects. This leads to richer sentiment analyses than
approaches which extract only one sentiment value for the entire text.

More recently, deep learning approaches have been utilised in sentiment analysis.
Deep learning is able to learn rich representations of data by incorporating many layers
of abstraction (Y. LeCun, Bengio, and Hinton 2015). Applied to natural language
tasks, deep learning can learn rich numerical representations of words. From this,
representations can readily be fed into a classification layer, which can be trained using
labelled corpora of sentences, texts, etc.

2.2 Related work

2.2.1 Stock market prediction with social media
Bollen, Mao, and Pepe (2011) investigated the link between public sentiment via Twit-
ter (utilising 1.1M tweets and a sentiment lexicon of 793 ‘mood adjectives’) and socio-
economic phenomena, including DJIA prices. This was among the first to note that
Twitter was an interesting source to explore public sentiment trends due to “the very
flexible and ephemeral nature of its content”. They concluded that socio-economic,
political, and cultural events have a significant impact on mood measured on Twitter,
validating the idea that online sentiment could have predictive power via this impact,
if the EMH does not hold. Subsequently, the seminal work of Bollen, Mao, and Zeng
(2011) attempted to predict the movement of the DJIA using Twitter and a similar
lexicon-based sentiment analysis approach, and obtained an accuracy of 86.7% in pre-
dicting stock movement direction (up or down). However, this study suffered from a
small test set of just 19 days, and hence the validity of these results may not generalise
to performance in real-world applications.

Later works directly attempted to address some of these methodological concerns,
however generally focused on a relatively small number of stocks/stock indices. Por-
shnev, Redkin, and Shevchenko (2013) predicted the DJIA with an accuracy of 64.1%
using a mood lexicon-based sentiment analysis approach with 74 days in the test set,
however found this was not a significant increase in accuracy over using price data
alone (technical analysis). T. H. Nguyen, Shirai, and Velcin (2015) predicted 18 stocks
over one year with an average accuracy of 54.4% and 78 days in the test set, using
posts on the Yahoo! Finance message board and an aspect-based sentiment analysis
considering consecutive nouns to be aspects. Derakhshan and Beigy (2019) improved
on this with Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003) sentiment analysis,
achieving 56.2–66.0% accuracy with the same data-set.

Deep learning has recently become more popular in the task of stock prediction
for both sentiment analysis, and prediction of stock direction and price. Xu and Co-
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hen (2018) provided one of the first attempts to predict a large number of stocks (88)
using deep neural networks to encode tweet/price information and make predictions.
They achieved an accuracy of 58.2% and a Matthews correlation coefficient3 (MCC)
of 0.0808. However, they ignored over one third of samples of price movements cor-
responding to days where a stock’s price changed by [−0.55%,0.5%], and thus these
results may not apply to the problem of predicting stock movement for any given day.
Sawhney et al. (2020) reported a higher accuracy and MCC of 60.8% and 0.195 re-
spectively on the same data-set, using an attention-based neural network. However,
this suffers from the same issues of applicability.

My work aims to provide insight into the potential for stock prediction using social
media data for any stock, and hence I examine every stock listed on the two largest
stock exchanges, and attempt prediction on a smaller but substantial subset. I main-
tain a focus on applicability throughout to ensure that my results not only provide an
accurate estimate of the generalisability to real-world applications, but can be applied
to real-world applications. I consider a period of one year to ensure a test set of suf-
ficient size and breadth can be used, utilise every trading day within this period, and
investigate a number of different forecasting horizons to maximise utility to investors.
Moreover, I present an interface which can be utilised by investors to run the developed
models and view predictions with ease.

2.2.2 Time series forecasting & classification
Time series forecasting

Charles C Holt (1957) and Brown (1957) proposed one of the simplest forecasting
models: ‘simple exponential smoothing’. This model assigns exponentially-decreasing
weights to previous observations. However, it proved unsuitable for time series with a
trend or seasonal component. Holt and his student Peter Winters extended the model to
account for these (Winters 1960), creating ‘Holt-Winters exponential smoothing’. This
technique has remained popular for at least 50 years after its introduction, due to its
simplicity, speed, and effectiveness (Goodwin et al. 2010).

Box and Jenkins (1970) developed another highly influential time series forecasting
approach, which was a method of fitting a statistical autoregressive integrated moving
average (ARIMA) model and using this to produce forecasts; this method is now known
as the Box-Jenkins method. Along with exponential smoothing, this remains one of the
most widely used approaches to forecasting (Hyndman and Athanasopoulos 2018).

Historically, these methods have been difficult to beat (Makridakis and Hibon 2000),
especially by machine learning. The latest ‘Makridakis competition’ (a time series
forecasting competiton held routinely since 1982), M4 (Makridakis, Spiliotis, and As-
simakopoulos 2020), examined 61 forecasting methods applied to 100,000 time series.
All pure machine learning methods used in the competition performed below naı̈ve
benchmarks.

Despite the results of M4, many RNN models have been utilised in time series
forecasting (Salinas et al. 2020; Rangapuram et al. 2018; Wen et al. 2017; Di Persio

3The Matthews correlation coefficient is a metric for evaluating binary classification performance which
can be used even for imbalanced labels. This will be expanded upon in Chapter 6
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and Honchar 2017). Siami-Namini, Tavakoli, and Namin (2018) found that, contrary
to M4’s results, an long short-term memory (Hochreiter and Schmidhuber 1997) model
was able to reduce error rates by 84–87% compared to ARIMA in a range of financial
time series forecasting experiments.

Following the development and popularisation of attention methods in deep learn-
ing models, a number of models have been created more recently which use attention in
order to better learn long-term dependencies and patterns. Fan et al. (2019) developed a
temporal attention-based model for multi-horizon probabilistic time series forecasting,
which they found to achieve state-of-the-art performance on two large data-sets. Build-
ing on the success of the attention-driven Transformer model in other domains, Lim,
Arik, et al. (2019) created a Transformer-based multi-horizon time series forecasting
model, which again achieved state-of-the-art performance on data-sets from a variety
of domains.

Time series classification

State-of-the-art time series classification (TSC) models have obtained great perfor-
mance improvements by transforming time series “into an alternative data space where
discriminatory features are more easily detected” (Bagnall et al. 2015). Initial imple-
mentations of this idea such as HIVE-COTE (Lines, S. Taylor, and Bagnall 2016) suf-
fered from long training times, and so more recently leaner approaches have been de-
veloped. ‘InceptionTime’ (Ismail Fawaz et al. 2020) implemented transformations with
CNNs, achieving accuracy on-par with HIVE-COTE with a training time of one hour
for 1,500 time series. Dempster, Petitjean, and Webb (2020) further improved upon
this with ‘ROCKET’ — an approach to transforming time series data with randomly-
generated convolutional kernels. This approach again achieved state-of-the-art accu-
racy, with a minimal training time of seconds for time series of 2,048 observations
(compared to HIVE-COTE’s equivalent time of several days).

Relation to the present work

To test the findings of the M4 competition, I utilise statistical models as baselines and
compare a variety of machine learning models against them. Additionally, I present
a model which attempts to build on the success of RNNs, attention methods, and
CNNs, and apply this to the tasks of stock price prediction and stock trend prediction.
ROCKET is also investigated as a fast and practicable model.

2.2.3 Sentiment analysis
In recent years, deep learning approaches have been applied extensively in the field
of natural language processing (NLP), owing to increases in computing power and
data (Otter, Medina, and Kalita 2020). RNN architectures have often been used due
to their ability to learn long-term dependencies in data. However, these architectures
suffer from long training times due to a high number of parameters and fundamental
limitations in parallelizability. The Transformer architecture (Vaswani et al. 2017) was
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developed to overcome these issues, and has since been utilised in many state-of-the-
art NLP models such as BERT (Devlin et al. 2018). BERT makes use of pre-training,
whereby the model’s parameters are initialised by training it on unlabelled data over
different tasks. This facilitates the use of large data-sets (e.g. 2300M words) and allows
for comparatively smaller numbers of training examples in down-stream tasks (i.e. the
actual tasks for which the pre-trained model is to be used).

A number of models have since been created which build on and improve upon
BERT. RoBERTa (Liu et al. 2019) improved the pre-training process of BERT, achiev-
ing superior performance in equivalent tasks, including sentiment analysis.

Tweets are a challenging target for sentiment analysis due to their short length
(280 characters4) and use of abbreviations, slang, emoticons, etc. Therefore, several
approaches have been developed for this task. Hutto and Gilbert (2014) developed
a sentiment lexicon-based model, VADER, using a ‘human-centered approach’. D. Q.
Nguyen, T. Vu, and A. T. Nguyen (2020) pre-trained a BERT model with the RoBERTa
pre-training procedure on 850M tweets to produce ‘BERTweet’. This model exceeded
the performance of both BERT and RoBERTa in a number of Twitter-specific NLP
tasks, including the SemEval-2017 Task 4 Twitter sentiment analysis task (Rosenthal,
Farra, and Nakov 2017).

Some contemporary works have applied transformer-based models to the task of
sentiment analysis of tweets for the task of stock prediction specifically. Lee, Gao,
and Tsai (2020) used BERT to perform sentiment analysis on tweets relating to stocks,
and obtained a promising accuracy of 87.3% in predicting investor sentiment on a la-
belled data-set. Bozanta et al. (2021) compared the transformer-based models BERT,
XLNet, DistillBERT, and RoBERTa in classifying the sentiments of tweets relating to
five prominent stocks and one stock index, and found that RoBERTa provided the best
performance on this task.

My work makes use of the pre-trained BERTweet model, fine-tuned for sentiment
analysis, in light of these promising results for the underlying RoBERTa training pro-
cedure, BERTweet itself, and the recent works which apply BERT-based models to
sentiment analysis of tweets in stock prediction specifically. I also leverage VADER
sentiment analysis to provide information where BERTweet cannot, given they are fun-
damentally dissimilar models.

4https://developer.twitter.com/en/docs/counting-characters
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Chapter 3

Problem statement

3.1 Stock price prediction
Given a series of 𝑛 observations of a trading day-aligned multivariate time series of
input features x𝑡 , we wish to predict the closing price of a stock 𝑦𝑡 for every trading
day within the multi-horizon window 𝐻. That is, we wish to find a function:

𝑓 (x𝑡−𝑛+1,x𝑡−𝑛+2, . . . ,x𝑡 ) :=
[
𝑦𝑡+1 𝑦𝑡+2 . . . 𝑦𝑡+𝐻

]
where 𝑡 is the index of a trading day.

Specifically, x𝑡 in this work comprises features extracted from both technical data
(stock prices etc.) and social media data (sentiment values etc.). I examine 𝐻 ∈
{1,5,20}, corresponding approximately to next-day, weekly, and monthly multi-horizon
forecasts (where 5 trading days comprise 1 week).

3.2 Stock trend prediction
Let the trend of a stock on trading day 𝑡 with respect to a horizon 𝐻 be defined as
follows:

𝑇𝑟𝑒𝑛𝑑 (𝑡, 𝐻) :=

{
1 if 𝑦𝑡+𝐻 > 𝑦𝑡

0 otherwise

where 𝑦𝑡 is the closing price of the stock on trading day 𝑡.
Hence, as in Section 3.1, the aim is to find a function of the trading day-aligned

multivariate time series of input features x𝑡 , i.e.

𝑔(x𝑡−𝑛+1,x𝑡−𝑛+2, . . . ,x𝑡 ) := 𝑇𝑟𝑒𝑛𝑑 (𝑡, 𝐻)

While much of the literature focuses on just the case of 𝐻 = 1 (T. T. Vu et al.
2012; T. H. Nguyen, Shirai, and Velcin 2015; Xu and Cohen 2018), I investigate 𝐻 ∈
{1,5,20,65} for several reasons:

• Horizons longer than one day have not been widely investigated in the literature
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• Practicality: a next-day trend prediction is fairly limited in its utility, and likely
to be hindered by random noise inherent in the stock market. Longer horizons
can readily be converted into trading strategies1.

• The ideal horizon is unknown, hence it makes sense to investigate a range of
horizons

1Via the use of ‘long put’ and ‘long call’ options
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Chapter 4

Data collection

I study the period of 01/01/2019–31/12/2019 for recency, ensuring that social media
usage is sufficiently high1; and relative stability compared to later years where the
COVID-19 pandemic wrought havoc on the stock market (Baker et al. 2020; Mazur,
Dang, and Vega 2021). Within this period, there were 252 trading days, which provided
ample data for training and testing while remaining within the limit of feasible study
given the project’s time constraints.

I collected two categories of data: stock data and social media data. Due to the
scale of the dataset (18GiB when stored in flat-files), a PostgreSQL database was used
to store and retrieve the data.

4.1 Stock information and prices
Stock symbols were obtained programmatically from the Nasdaq website2, which pro-
vides a public list of all stock symbols on both the Nasdaq and NYSE stock exchanges.
Stock price data – including open, close, high, and low prices; and volume – was then
retrieved for the chosen period individually for each symbol from Yahoo! Finance.

In total, 7,789 stock symbols were collected from the Nasdaq website. Price data
was retrievable for 4,935 (63%) of these, with the remainder either non-existent in the
chosen period (e.g. if the company was listed after or unlisted before 2019) or missing
from the Yahoo! Finance website. 323 stocks in this set did not have full price data
for all 252 trading days in 2019 and therefore were excluded from study, leading to the
final number of 4,612 stocks in the data-set.

4.2 Twitter
To collect tweets from Twitter, the Python library Twint (Zacharias 2022) was em-
ployed. Twint scrapes the Twitter website in order to collect Tweets via the search

1Social media usage in the US – which makes up the largest portion of Twitter’s user-base – steadily
increased between 2006-2019 and has remained relatively stable since (Social Media Fact Sheet 2021).

2https://www.nasdaq.com/market-activity/stocks/screener
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functionality, and has been employed in several publications chiefly due to its accessi-
bility and availability as an open-source Python library (Nuzhath et al. 2020; Bonsón,
Perea, and Bednárová 2019).

Finding relevant tweets for a particular stock presented a challenge: searching for
the company name(s) would almost certainly result in a high number of false positive
matches for many companies (e.g. Apple) due to the diversity and volume of content
on Twitter. However, Twitter allows users to embed ‘cashtags’ in their tweets for the
explicit purpose of stock (and cryptocurrency) discussion. In order to maximise rele-
vancy of collected tweets to stocks in question, search queries of cash-tags were used
to find relevant tweets for a given stock.

Specifically, for each stock in the data-set, a search query consisting of the cash-
tag ‘$symbol ’ was used. Queries were performed and tweets collected using Twint,
with a few patches applied to the library to fix bugs which were present at the time of
data collection. Due to the number of stocks, high volume of tweets, and deliberate
rate-limiting, this process took 3 weeks to complete.

# Symbol Tweets
1 $LTC 279,257
2 $FB 162,879
3 $TSLA 161,873
4 $AAPL 155,116
5 $LINK 154,151
6 $AMZN 148,365
7 $NFLX 138,548
8 $BCH 116,953
9 $EOS 115,971

10 $NEO 86,944

Table 4.1: Top 10 symbols by number of tweets containing the symbol

Overall, 27,275,794 tweets were collected through this method, of which 18,226,604
were discarded as false positives with no cashtags (Twitter’s search functionality does
not limit results to exact matches of the search terms). From the remainder, a further
8,802 tweets contained only cashtags corresponding to symbols not in the data-set (e.g.
indices such as the DJIA, cryptocurrency symbols), leaving 9,040,388 tweets in the
data-set.

Figure 4.1 shows the distribution of number of tweets per symbol, based on how
many tweets contain a given stock symbol. The median number of tweets per stock
symbol is 1,462, which would provide a meagre 4 tweets per day to utilise for pre-
diction. However, 5% of stock symbols have 7,893 tweets or more, corresponding to
a slightly more reasonable 20 tweets per day. A small number of symbols have over
100,000 tweets (Table 4.1), however it seems more likely that some of these correspond
to cryptocurrencies rather than a stock sharing the same symbol.
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Figure 4.1: The distribution of the number of collected tweets per stock, excluding
stocks for which price data was not retrievable.

4.3 Cryptocurrency symbols
In addition to stocks, cryptocurrencies are discussed extensively on Twitter using the
same cash-tag format, e.g. ‘$BTC’ (Bitcoin). I noticed that a number of these had
equivalent stock symbols which corresponded to companies entirely separate from the
cryptocurrency in question. For instance, ‘$LTC’ could refer to the cryptocurrency
Litecoin, or the real estate investment trust company LTC Properties Inc. (listed on the
New York Stock Exchange as LTC).

To investigate this problem of this overlap, I collected a list of cryptocurrency sym-
bols using the free CoinMarketCap API3. This produced 4,636 unique cryptocurrency
symbols. Of these, 673 had equivalent symbols in my data-set of stock symbols.
Inferring whether the tweets in my data-set were referring to a cryptocurrency or a
stock would be non-trivial: for instance, ‘$LTC’ almost certainly would refer to Lite-
coin, while ‘$FB’ would almost certainly refer to Meta Platforms, Inc. rather than the
Fenerbahçe Token listed on CoinMarketCap under the same symbol.

Therefore, I did not exclude any stocks/tweets from study on the basis of overlap-
ping symbols with cryptocurrencies, and instead limited experimental study of stocks
based on correlations between collected tweet sentiments and price movement (under
the assumption that if tweets are referring to a cryptocurrency, their sentiments would
not be correlated at all with the movement of an unrelated stock). However, I did ex-
clude cryptocurrency symbols from the ‘top N’ option in the interface, which allows
users to forecast for the most tweeted stock symbols.

3https://coinmarketcap.com/api/
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Chapter 5

Methods

5.1 Feature engineering
Feature engineering is an important part of machine learning approaches, aiming to
extract numerical features from the collected raw data, which can be fed into a machine
learning model for prediction. In my project, features may be considered trading day-
based functions of the form 𝑓 : {0,1, ..., 𝑁 −1} → R, where 𝑁 is the number of trading
days in the data-set (𝑁 = 252). From this, it is trivial to split the data-set into subsets
for training/testing, produce a vector of features for input into a model, etc.

I break this section down into the categories of features that I extracted from the
data, and eventually used for prediction.

5.1.1 Technical features
Following the technical analysis approach of stock prediction, and given that sentiment
data alone would be insufficient to achieve reasonable prediction accuracy, I extracted
a number of features from the stock price and volume data corresponding to well-
established technical indicators used by technical analysts in practice.

Prices

After every trading day that the stock market is open, there are four price values avail-
able to broadly represent the day: the open (the price of the stock when the market
first opens), close (the price when the market closes), high (maximum price), and low
(minimum price).

Some company actions can affect stock prices. For instance, a ‘stock split’ can be
enacted by the company, whereby the number of shares in the company increase by a
factor. Following a 2-for-1 split, investors will own twice as many shares as prior to
the split, each with half of their value before the split. Therefore, if we were to use
the open, close, high, and low prices directly, the price of the stock would appear to
dramatically change after actions such as a stock split.
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To account for this, I use the adjusted open, close, high, and low prices as features,
which take these company actions into account and avoid sudden dramatic changes in
stock price. This approach is often used for stock prediction in the literature (T. H.
Nguyen, Shirai, and Velcin 2015; Xu and Cohen 2018).

Volume

Trading volume for a given trading day is the total number of shares traded during that
day. Volume is positively associated with price change (Karpoff 1987) and therefore
may provide information to aid price prediction. Being a simple integer value, volume
is used directly as a feature.

Exponential moving average

An exponential moving average (EMA) is an average of data-points which provides
more weight to more recent data-points. Applied to stock prices, this allows us to
compute a value which utilises all prices of the stock up to a point in time, smoothing
out fluctuations to provide an overall trend. Compared to a simple moving average
(which is an unweighted average of all data-points in a fixed-size, moving window),
an exponential moving average has the benefits of a) capturing the intuition that more
recent stock prices should have more influence on the future stock price than older
stock prices; and b) utilising all data-points up to the point for which the EMA is being
calculated, rather than only those within a fixed-size window.

Mathematically, we can define the EMA as follows:

𝐸𝑀𝐴(𝑥, 𝑡) = 𝛼 · 𝑥(𝑡) + (1−𝛼) ·𝐸𝑀𝐴(𝑡 −1)

where 𝑥(𝑡) is the series we wish to apply the EMA to, such as the time series of stock
closing prices.

The factor 𝛼 determines how quickly the weight of a previous stock price deterio-
rates, with a higher 𝛼 implying faster deterioration. The most commonly used method
to set 𝛼 is with the formula 𝛼 = 2/(𝑁 +1), where 𝑁 is analogous to the window size of
the simple moving average (Treloar 2008). The resulting EMA is often referred to as
the 𝑁-day EMA.

There are several approaches for setting the first term, 𝐸𝑀𝐴(0). For simplicity, I
use the common approach of using the first observation as the first value of the EMA,
i.e.

𝐸𝑀𝐴(𝑥,0) = 𝑥(0)
Since the first term of the EMA is fundamentally erroneous, the series takes some

number of iterations to converge. To avoid shortening the data-set available for training
and testing (as waiting for the series to converge would necessitate discarding the first
few EMA values), I do not take any approach to account for this, and indiscriminately
make use of the first few likely erroneous EMA values as if they were accurate.

I use the technical indicators of a ‘fast’ 12-day EMA and ‘slow’ 26-day EMA,
both of adjusted closing prices, as features. These ‘periods’ are both commonly used
in technical analysis, and seemed sufficiently short so as to avoid a long period of
unreliable values before convergence.
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Moving average convergence-divergence

A valuable indicator to technical analysts is the momentum of an asset (Kaufman 2003):
if the price of a stock has risen since 𝑁 days ago, then the momentum of the stock
is positive and the difference in prices over this period gives the magnitude of the
momentum. If this momentum is positive and large, the price of a stock is rising fast,
which can be interpreted as a signal to buy stock.

Using a simple difference between two prices to calculate momentum (e.g. 𝑝𝑡 −
𝑝𝑡−𝑁 ) would be erratic and provide an unstable indicator of momentum highly affected
by day-to-day fluctuations in price. Therefore, prices are smoothed from their original
series using, for instance, an exponential moving average.

The moving average convergence-divergence (MACD) is an indicator of momen-
tum commonly used by technical analysts which takes the difference between a ‘fast’
and ‘slow’ EMA — most commonly the 12-day and 26-day EMAs, respectively, of
closing price. Mathematically:

𝑀𝐴𝐶𝐷 (𝑡) = 𝐸𝑀𝐴12 (𝑝𝑐, 𝑡) −𝐸𝑀𝐴26 (𝑝𝑐, 𝑡)

where 𝑝𝑐 (𝑡) gives the closing price of a stock on the trading day 𝑡.
This series is again smoothed with another exponential moving average to produce

a signal line, which may be used to show, resiliently to any fluctuations in the MACD,
changes in the overall momentum of a stock. Most commonly, a 9-day EMA is used
for this purpose, i.e.

𝑀𝐴𝐶𝐷𝑠𝑖𝑔𝑛𝑎𝑙 (𝑡) = 𝐸𝑀𝐴9 (𝑀𝐴𝐶𝐷, 𝑡)

I utilise both the MACD of the adjusted closing price of a stock and the derived
signal line as features for prediction.

On-balance volume

On-balance volume is another indicator of momentum popularised by Granville (1963).
It is defined as follows:

𝑂𝐵𝑉 (𝑡) =𝑂𝐵𝑉 (𝑡 −1) +


𝑣(𝑡) if 𝑝𝑐 (𝑡) > 𝑝𝑐 (𝑡 −1)
0 if 𝑝𝑐 (𝑡) = 𝑝𝑐 (𝑡 −1)
−𝑣(𝑡) if 𝑝𝑐 (𝑡) < 𝑝𝑐 (𝑡 −1)

where 𝑣(𝑡) is the trading volume of the stock on a given trading day.
Clearly, the OBV necessitates a choice in an initial value 𝑂𝐵𝑉 (0) like in exponen-

tial moving averages. I use the simple setting of 𝑂𝐵𝑉 (0) = 0, where 𝑡 = 0 is the first
trading day in the data-set.

While both MACD and OBV are momentum indicators, I utilise both as features to
maximise diversity, reflecting a diversity of attitudes and approaches among technical
analysts.
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5.1.2 Sentiment features
To capture the sentiment of investors and traders in the collected Twitter data, I ap-
plied sentiment analysis to the data-set and extracted from this features suitable for use
in prediction. I utilised complementary approaches for sentiment analysis, including
one state-of-the-art approach, in an attempt to exploit the individual strengths of each
approach and therefore capture a robust collection of sentiment features for use in pre-
diction. These approaches are VADER and BERTweet sentiment analysis, which are
described in this section.

VADER sentiment analysis

As discussed in Section 2.2.3, VADER (Hutto and Gilbert 2014) is a rule-based senti-
ment analysis technique making use of a specialised sentiment lexicon for social media
text. I utilised the open source VADER Python library maintained by Hutto1 to extract
sentiments from each tweet.

VADER produces from a tweet four scores: pos, neu, neg, and compound. The
former three scores are proportions of the text which fall into each category (positive,
neutral, or negative sentiment), while the latter score provides a “normalised, weighted
composite score” of sentiment in the range [−1,1]. Following the recommendation of
the authors of VADER and common practice, I utilised the compound score in VADER
sentiment features.

Trading day alignment There was the question of how to represent the overall
sentiment for a particular day given all tweets which occurred on that day. I de-
vised and implemented four strategies of aggregating sentiments for a particular day.
Let 𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (𝑡) be the compound sentiment scores for all tweets on a day 𝑡, e.g.
𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (𝑡) = {0.14,−0.59,0.98,−0.93, ...}. Then, the aggregation strategies were
as follows:

𝑉𝐴𝐷𝐸𝑅𝑠𝑢𝑚(𝑡) =
∑︁

𝑐 ∈𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (𝑡)
𝑐

𝑉𝐴𝐷𝐸𝑅𝑎𝑣𝑔 (𝑡) =
1

|𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (𝑡) |𝑉𝐴𝐷𝐸𝑅𝑠𝑢𝑚 (𝑡)

𝑉𝐴𝐷𝐸𝑅𝑏𝑖𝑛𝑡𝑜𝑡 (𝑡) =
∑︁

𝑐 ∈𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (𝑡)


1 if 𝑐 > 0.05
0 if −0.05 ≤ 𝑐 ≤ 0.05
−1 if 𝑐 < −0.05

𝑉𝐴𝐷𝐸𝑅𝑏𝑖𝑛 (𝑡) = sgn(𝑉𝐴𝐷𝐸𝑅𝑏𝑖𝑛𝑡𝑜𝑡 (𝑡))

The latter two aggregation strategies make use of the classification thresholds used
by Hutto and Gilbert (ibid.).

Empirically, sum and average aggregation strategies worked best, with the sum
obtaining the highest performance. Intuitively, this was expected as sum retains the

1https://github.com/cjhutto/vaderSentiment
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most information: it encapsulates all sentiment strengths using the compound score
directly, and the overall volume of tweets for the particular stock.

To demonstrate this, I ran an experiment which trained a random forest model to
predict stock prices using these four features (𝑉𝐴𝐷𝐸𝑅𝑠𝑢𝑚(𝑡), 𝑉𝐴𝐷𝐸𝑅𝑎𝑣𝑔 (𝑡), etc.)
and extracted the corresponding feature importances. Figure 5.1 shows the results of
this experiment on the top 5% of stock symbols by number of tweets (excluding any
symbols with a conflicting cryptocurrency symbol). Interestingly, sum and average
aggregation had similar importance, however I utilised only sum as a final feature fol-
lowing my intuition.

Figure 5.1: Feature importances extracted from a random forest regression model
using features corresponding to each aggregation strategy of VADER sentiment (and

no others), over a distribution of 200 stocks.

BERTweet sentiment analysis

I utilised the open source Pysentimiento Python library (Pérez, Giudici, and Luque
2021) in order to extract sentiments using BERTweet. This library provided a BERTweet
model trained on the SemEval 2017 task 4A corpus (Rosenthal, Farra, and Nakov
2017), consisting of about 40,000 English tweets labelled as positive, neutral, or nega-
tive sentiment.

To represent the sentiment for a particular trading day given all the sentiment prob-
abilities of each tweet in that day, I implemented the sum and average aggregation
strategies as in VADER. However, as this model outputted three values, this produced
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six candidate features overall:

𝐵𝐸𝑅𝑇𝑃𝑜𝑠𝑠𝑢𝑚 (𝑡) =
∑︁

𝑚 ∈𝑇𝑤𝑒𝑒𝑡𝑠 (𝑡)
𝑃(𝑚 is positive;𝜃𝐵𝐸𝑅𝑇𝑤𝑒𝑒𝑡 )

𝐵𝐸𝑅𝑇𝑃𝑜𝑠𝑎𝑣𝑔 (𝑡) =
1

|𝑇𝑤𝑒𝑒𝑡𝑠(𝑡) | 𝐵𝐸𝑅𝑇𝑃𝑜𝑠𝑠𝑢𝑚(𝑡)
and likewise for neu/neg

I investigated a number of strategies to transform the positive, neutral, and/or neg-
ative probabilities into a single value with the aim of producing a single ‘compound’
feature with more predictive power than any individual probability feature. My ap-
proach to this was to apply a range of simple mathematical functions and determine
experimentally which was best. The most sensible of these were as follows:

𝐵𝐸𝑅𝑇𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑
(1)
𝑠𝑢𝑚(𝑡) = 𝐵𝐸𝑅𝑇𝑃𝑜𝑠𝑠𝑢𝑚(𝑡) −𝐵𝐸𝑅𝑇𝑁𝑒𝑔𝑠𝑢𝑚(𝑡)

𝐵𝐸𝑅𝑇𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑
(2)
𝑠𝑢𝑚(𝑡) = 𝐵𝐸𝑅𝑇𝑃𝑜𝑠𝑠𝑢𝑚(𝑡) · 𝐵𝐸𝑅𝑇𝑁𝑒𝑔𝑠𝑢𝑚 (𝑡)

𝐵𝐸𝑅𝑇𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑
(3)
𝑠𝑢𝑚(𝑡) = log(𝐵𝐸𝑅𝑇𝑃𝑜𝑠𝑠𝑢𝑚(𝑡) +1) − log(𝐵𝐸𝑅𝑇𝑁𝑒𝑔𝑠𝑢𝑚(𝑡) +1)

and likewise for the average aggregation strategy.
Utilising all of these 12 features in prediction would likely introduce noise and

hinder prediction overall. Therefore, I compared their correlations with the (adjusted)
closing price of a stock, and found after manually comparing a few high-volume stocks
($AAPL, $TSLA, etc.) that Compound 3 (sum) was almost certainly the most correlated.
I utilised positive, neutral, and negative probability features (both sum and average)
with this Compound 3 (sum) feature in the final experiments, with the aim of avoiding
noise and maximising available information for prediction.

Figure 5.2 shows the correlations more formally for demonstrative purposes (though
was done after the fact): the mean correlation between each candidate feature (lagged
by 1 trading day) and the adjusted close price over the top 5% of stock symbols by
number of tweets (excluding any potential cryptocurrency symbols) is plotted. Com-
pounds 1 and 3 in fact exceeded the correlations of each individual probability feature,
with Compound 3 (sum) obtaining the highest mean correlation coefficient. The indi-
vidual probability features have fairly low correlations, however this is likely due to
lack of weighting or filtering, or tweet volume not correlating with predictive power of
tweets on stock price.
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Figure 5.2: Pearson correlation coefficients (𝑟) between candidate BERT features and
stock closing prices, averaged over 200 stocks

Tweet filtering and weighting

A large number of tweets did not provide much useful information about overall in-
vestor sentiment towards a stock, and often mentioned many stocks at once (e.g. Fig-
ure 5.3). Some previous works have utilised topic and aspect-based sentiment analysis
which may alleviate these issues (T. H. Nguyen, Shirai, and Velcin 2015), however the
fine-tuned BERTweet model and VADER sentiments provide only an overall sentiment
of text. Hence, the sentiment for a tweet mentioning multiple stocks would be the same
for all stocks mentioned.

To address this issue, I filtered out all tweets which mentioned more than one sym-
bol. As shown in Figure 5.4, this was a minority of tweets, and 6,822,957 tweets
remained in the data-set after filtering.

Many tweets also had some number of retweets or likes: after filtering, 8.55% of
tweets had at least one retweet, and 18.4% had at least one like. Retweets and likes
are means by which users on Twitter may express agreement with a tweet and, in the
former case, share it with their followers. Therefore, retweets and likes could provide
a sensible way to give more weight to tweets engaged more with by users, and amplify
investor sentiments with widespread agreement. This approach has been used in some
prior works such as Carosia, Coelho, and Silva (2020), although broadly its use seems
limited.
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Figure 5.3: Example of multiple stock symbols referred to in a single tweet with no
explicit information on investor sentiment.

I investigated two forms of weighting. Formally:

𝑊𝑒𝑖𝑔ℎ𝑡𝑅 (𝑚) = 𝑅𝑒𝑡𝑤𝑒𝑒𝑡𝑠(𝑚)

𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝐿 (𝑚) =
∑

𝑞 𝑅𝑒𝑡𝑤𝑒𝑒𝑡𝑠(𝑞)∑
𝑞 𝐿𝑖𝑘𝑒𝑠(𝑞)

· 𝐿𝑖𝑘𝑒𝑠(𝑚) +𝑅𝑒𝑡𝑤𝑒𝑒𝑡𝑠(𝑚)

where 𝑊𝑒𝑖𝑔ℎ𝑡∗ (𝑖) gives the weight for a tweet 𝑖, to be multiplied by the sentiment
value(s) in summing and averaging over a trading day.

Empirically, testing on a small handful of stocks, I found that retweet weighting
provided the highest correlation with stock prices, and therefore I utilised this weight-
ing in the experiments.

Notably, these weights are zero for tweets with no retweets (in the first case), or
no likes and no retweets (in the second case). Thus, tweets with no agreement from at
least one other user are discarded, which is a majority of tweets in both cases. Given
this, I included retweet-weighted BERTweet sentiments aggregated with summing and
averaging for each of the positive, neutral, and negative probabilities (six features in
total) in addition to the unweighted BERTweet sentiment features. However, all of
these features made use of the filtering described above.

25



Figure 5.4: Distribution of tweets by number of symbols mentioned via cash-tags (i.e.
including stock symbols not in the data-set). Around 6.8M tweets mentioned only one

symbol.

Tweet counts

When news and events take place that affect companies, discussion surrounding these
companies increases in volume. Additionally, news and events is often related to or
reflected in changes in a company’s stock price. Under these assumptions, I imple-
mented an additional feature of ‘tweet counts’, which is simply the number of tweets
concerning a stock on any given trading day (without filtering).

Figure 5.5 shows the change in tweet count for $AAPL stock; spikes in the number
of tweets appear to coincide with changes in stock price, though it remains uncertain
whether they precede these changes. This feature was implemented with the hypothesis
in mind that at least some changes in stock price are preceded by changes in tweet
volume and social media engagement.
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Figure 5.5: Number of tweets plotted against stock price for Apple Inc. ($AAPL) over
all trading days in the data-set.

Trading day alignment

While the technical features discussed are all aligned with trading days (since price/volume
data is only released on trading days), tweets occur on any day of the week, and hence
there is the question of how to align sentiment data with trading days.

Various approaches have been proposed to deal with this problem: Xu and Cohen
(2018) and Makrehchi, Shah, and Liao (2013) utilised all tweets from consecutive non-
trading days preceding (and including) a trading day; Sprenger et al. (2014) aligned
all tweets after 4:00PM (the closing time of US stock markets) on a trading day to the
following trading day.

In this work, I utilised only tweets which fell on trading days for prediction. This
should be considered to be a limitation of this work: through this method many tweets
are needlessly discarded. However, even with this limitation, the volume of tweets
available for prediction is still fairly substantial.

5.1.3 Summary of features
Table 5.1 summarises the features included in the prediction models and experiments.

Type Feature

Technical Price (close)
Price (open)
Price (high)

27



Price (low)
EMA of closing price (12-day)
EMA of closing price (26-day)
MACD of closing price (MACD line)
MACD of closing price (signal line)
On balance volume

Sentiment VADER (sum)
BERTweet (positive probability, sum, retweet-weighted)
BERTweet (positive probability, sum, no weighting)
BERTweet (neutral probability, sum, retweet-weighted)
BERTweet (neutral probability, sum, no weighting)
BERTweet (negative probability, sum, retweet-weighted)
BERTweet (negative probability, sum, no weighting)
BERTweet (positive probability, average, retweet-weighted)
BERTweet (positive probability, average, no weighting)
BERTweet (neutral probability, average, retweet-weighted)
BERTweet (neutral probability, average, no weighting)
BERTweet (negative probability, average, retweet-weighted)
BERTweet (negative probability, average, no weighting)
BERTweet (compound 3, sum, no weighting)
Tweet counts

Table 5.1: All engineered features which were included in experiments

5.1.4 Feature lag
In predicting the change in stock price for, e.g. a week’s time from the present, it would
almost certainly be insufficient to utilise only the present day’s price and sentiment
values, as a trend could not be extracted from this. Therefore, it is necessary to utilise
a window of time for prediction.

Various window sizes have been used in previous research for this purpose. Bollen,
Mao, and Zeng (2011) and Porshnev, Redkin, and Shevchenko (2013) examined each
day in a 7-day window separately, while T. H. Nguyen, Shirai, and Velcin (2015) used
just a 2-day window of trading days prior to the target day for prediction.

Building on previous work and to avoid long training times, I utilise a window of 5
trading days (corresponding to a week, excepting holidays) prior to a ‘pivot day’. I de-
fine pivot day as the first trading day for which the closing price is unavailable/hidden.
Thus, next-day price predictions will target this pivot day, while e.g. 5-day predictions
will target the day 4 days after the pivot day.

More formally, for a pivot day 𝑡0 and feature set F = { 𝑓1, 𝑓2, ..., 𝑓𝑛}, the data utilised
for prediction is:

x𝑡0 =
⋃

𝑘∈[1,5]
{ 𝑓𝑖 (𝑡0 − 𝑘) | 𝑓𝑖 ∈ F}
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Figure 5.6: Visual explanation of pivot days and the 5-day lag window used for
prediction. Dates are ‘day/month’, all in 2019.

5.2 Feature selection and extraction
In supervised machine learning problems, it is generally inadvisable to have highly cor-
related features (multicollinearity). Aside from increasing computation and/or learn-
ing time unnecessarily, such features can hinder the generalisation performance and
stability of models. For instance, one independent variable underlying several corre-
lated features could have an unduly large influence on prediction, increasing the risk of
over-fitting (this is the case for e.g. an SVM with an RBF kernel).

Feature selection is an umbrella term for techniques which reduce a set of features
into a smaller subset consisting of only relevant features, while feature extraction refers
to transforming one set of features to a new set (Sammut and Webb 2011). I investi-
gated both for the purpose of reducing redundancy and multicollinearity in the gathered
features, aiming to produce a set of features highly correlated with the unlagged stock
price, but not with each other. Both approaches have the additional benefit of reducing
the dimensionality of inputs to the machine learning models, thereby reducing training
time and simplifying the models.

Some models such as random forest and neural networks perform feature selection
intrinsically (and are often employed for this express purpose). Additionally, these
models are fairly resilient to multicollinearity: for instance, neural networks guard
against the issues of multicollinearity due to their “redundant architecture” (Veaux and
Ungar 1994); while random forest models utilise random subsets of features in training
each decision tree, and these decision trees split by selecting features that best separate
training examples (and therefore there is no bias towards correlated features: features
are used for decisions only if they are good at separating the data). Hence, in these cases
I delegate feature selection to the models themselves. However, in the case of neural
networks, this comes at a cost of slightly increased training time/slower convergence.

In this section, I demonstrate the multicollinearity in the gathered features and de-
scribe in brief the feature extraction and feature selection techniques applied.
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5.2.1 Multicollinearity in gathered features
To investigate the level of multicollinearity in the features gathered in Section 5.1, I
employed two methods: the Pearson’s correlation coefficient, and variance inflation
factors. Rather than perform an exhaustive investigation, I examined a small number
of stocks chosen based on their high tweet volumes manually. The results are reported
for $AAPL stock only in this section, for brevity.

Pearson’s correlation

I computed the Pearson’s correlation coefficient matrix between all gathered features
and plotted the result as a heat-map in order to detect high levels of correlation between
features.

The result for $AAPL stock over the entire period under study (01/01/2019–31/12/2019)
is shown in Figure 5.7. Generally, correlation coefficients of 0.80 or higher are con-
sidered diagnostic of multicollinearity (Berry, Feldman, and Stanley Feldman 1985).
There are several such occurrences of collinearity among the gathered features. In par-
ticular, there is exceptionally high correlation between open/high/low/close prices and
exponential moving averages, and very high correlations of 0.72–0.99 among sum-
aggregated BERTweet probability features. The MACD line and MACD signal line
features correlate very highly with each other, which is to be expected (since the latter
is an EMA of the former); and on-balance volume correlates fairly highly with price
and EMA features.

Many features have unexpectedly poor correlations with the target feature — the
closing price. For instance, BERTweet with average aggregation of negative probabil-
ities has a correlation coefficient of 0.04–0.12; while tweet count has a meagre -0.02
correlation coefficient. This is indicative that these features (in the case of a 1 day lag
for $AAPL stock) likely do not provide any relevant information for prediction.

From these results, it seems clear that there is a very high degree of multicollinearity
in the gathered features, in addition to a number of irrelevant features/noise. Thus,
feature selection is highly important to address this issue.
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Figure 5.7: Correlations between features lagged by 1 trading day, and unlagged
closing price for the pivot day for $AAPL stock. Light yellow indicates strong positive

correlation, while dark purple indicates strong negative correlation.
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Variance inflation factor

The variance inflation factor quantifies multicollinearity directly by assessing how well
an ordinary least squares (OLS) regression model can be fitted to one variable (or fea-
ture) given the remaining variables through the coefficient of determination 𝑅2. Often
this can be a more informative measure than Pearson’s correlation alone, since it takes
into account all other variables at once, whereas Pearson’s only gives the correlations
between two variables at a time.

If 𝑅2
𝑋𝑖 |𝑋−𝑖

is the coefficient of determination for an OLS regression model which
predicts variable 𝑋𝑖 given all other variables 𝑋−𝑖 , the variance inflation factor can be
computed as follows (James et al. 2021):

𝑉𝐼𝐹𝑖 =
1

1−𝑅2
𝑋𝑖 |𝑋−𝑖

Thus, the range of a variance inflation factor is [1,∞), where 1 indicates no collinear-
ity/that the variable cannot be linearly predicted using only the other available vari-
ables. A cut-off of 5 or 10 is generally considered indicative of “a problematic amount
of collinearity” (ibid.).

Table 5.2 shows the variance inflation factors of all of the gathered features un-
der a one day lag. As should be expected, the 12 and 26-day EMAs and MACD
line have very large variance inflation factors, since these are linearly related in that
𝑀𝐴𝐶𝐷 (𝑡) = 𝐸𝑀𝐴12 (𝑝𝑐, 𝑡) − 𝐸𝑀𝐴26 (𝑝𝑐, 𝑡). However, aside from these, there is a
clearly a large degree of multicollinearity in the gathered features with just a one day
lag: almost certainly the extent of multicollinearity will increase when a 1–5 day lag
window is used. The only features with a multicollinearity less than 5 are tweet counts
and a BERTweet negative probability feature with average aggregation and retweet
weighting, which (from above) have correlation coefficients with the target variable of
0.02 and 0.04, respectively. Hence, there is strong evidence of redundancy in these fea-
tures, and prediction may be vastly improved if feature selection and/or dimensionality
reduction techniques are applied in order to reduce the level of multicollinearity.
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Feature (all lagged by one day) VIF
EMA of closing price (12-day) ∞
MACD of closing price (MACD line) ∞
EMA of closing price (26-day) 3002399751580330.50
Price (open) 1444.63
Price (high) 1365.80
Price (close) 1156.24
Price (low) 1142.90
BERTweet (neutral probability, average, no weighting) 175.44
BERTweet (positive probability, sum, no weighting) 82.54
BERTweet (neutral probability, sum, no weighting) 79.93
MACD of closing price (signal line) 53.03
On balance volume 47.64
BERTweet (negative probability, average, no weighting) 38.09
BERTweet (negative probability, sum, no weighting) 27.89
BERTweet (positive probability, average, no weighting) 25.21
BERTweet (neutral probability, sum, retweet-weighted) 19.59
BERTweet (positive probability, sum, retweet-weighted) 10.75
VADER (sum) 8.16
BERTweet (negative probability, sum, retweet-weighted) 7.94
BERTweet (neutral probability, average, retweet-weighted) 7.11
BERTweet (compound 3, sum, no weighting) 6.40
BERTweet (positive probability, average, retweet-weighted) 6.11
Tweet counts 4.76
BERTweet (negative probability, average, retweet-weighted) 1.68

Table 5.2: Variance inflation factors among one day-lagged features for $AAPL stock
over the full data-set period

5.2.2 Principal component analysis
Principal component analysis (PCA) is a transformation which maps data (or features,
in this case) from one coordinate system to a new coordinate system with axes of prin-
cipal components (PCs). These principal components are computed such that, succes-
sively, the mapped data has maximal variance and is completely uncorrelated with all
prior principal components (Jolliffe 1990). That is, PCA eliminates multicollinearity,
but this comes at a cost of interpretability: data is mapped to the new space through
linear transformations over all features/variables, and hence there is no trivial mapping
between the original features and the features in the new space.

PCA is often utilised as a dimensionality reduction technique by choosing to keep
only the first 𝑘 principal components (dimensions in the new space) and discarding the
rest. Since the variance of these principal components is maximal for the first principal
component and decreasing, choosing even a fairly small 𝑘 can ‘explain’ most of the
variance in the data; in this sense, PCA is said to ‘summarise’ the data, and thus is often
used as a feature extraction technique — particularly in the context of support vector
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Figure 5.8: Variance explained by each principle component after PCA of one
day-lagged features for $AAPL stock over the full data-set period. The first six (indices
are zero-indexed) principle components explain 95% of variance in the original data.

machines and time series forecasting (Cao and Chong 2002; Chowdhury, Chakravarty,
Hossain, et al. 2018).

I employ PCA as a feature extraction technique for models which do not perform
feature selection intrinsically (namely, SVM), in order to eliminate multicollinearity
and reduce redundancy and dimensionality. Rather than set the number of principal
components to keep explicitly, I set a minimum proportion of the variance which must
be ‘explained’ by the selected number of principal components. This is because a dif-
ferent number of principal components may be needed to explain the same amount of
variance for different stocks, and hence the approach is more consistent and generalis-
able by choosing a proportion.

Figure 5.8 shows the variance explained by each principal component after apply-
ing PCA to the 24 gathered features lagged by one day for $AAPL stock. Since there
was a high degree of redundancy among the gathered features, only very few principal
components are necessary to explain most of the variance in the original data: 6 PCs
can explain 95% of the variance, and 11 PCs explain 99% of the variance. Thus, PCA
works well in this context to extract a smaller number of features while retaining most
information from the original set of features.

5.2.3 Recursive feature elimination
Some machine learning models have a notion of ‘feature importance’ — a value associ-
ated with each feature which describes how important it is to the model in making pre-
dictions. For instance, in linear regression, (assuming that all features are of the same
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scale) coefficients in the linear model can provide a crude feature importance value.
Recursive feature elimination fits a model first with all features, then recursively, the
least important features are discarded and the model is re-fitted, until a desired number
of features is reached. In principle, this should mitigate multicollinearity to a large
extent since two correlated features are unlikely to be equally important in prediction.
Additionally, noise and dimensionality are reduced since unimportant features are re-
moved. However, there are important choices to be made in the number of features to
keep, and the model to use.

Setting the number of features to keep directly is a difficult choice and may be
over-fit to a particular time period/stock. A better approach is to evaluate the perfor-
mance of the model from which feature importances are being extracted after each
discarding of features/re-fitting, and choose the number of features which yielded the
best performance. To obtain a good estimate of how the model would perform on an
unseen test set, cross-validation is often used (a discussion of cross-validation is given
in Section 6.1.1). This approach is known as recursive feature elimination with cross-
validation.

Random forest (RF) models are a good candidate for extracting feature importance
from due to their ease of use as a ‘black box’ model with good performance, and low
variance due to their use of random subsets of features in training each decision tree
in the forest. There are two main RF feature importance measures in common use:
Mean Decrease Impurity (MDI), which is based on the gains made in the decision
trees by splitting on a particular feature; and permutation importance, which permutes
occurrences of a feature in the test set and observes changes in accuracy/error (Scornet
2020). The Scikit-Learn Python library implements the former of these two measures.

In this project, I utilise recursive feature elimination with (nested) cross-validation2

using a RF model, via the Scikit-Learn Python library, as a feature selection method.
The number of trees in the RF is fixed at 200, which was chosen as a balance between
accuracy and speed. I investigate this method in addition to PCA for trend prediction
tasks, and in place of PCA for price prediction: on this latter task, it is beneficial not to
transform features such as price. Using a feature selection approach therefore retains
the original space of the features, and simply filters out unhelpful features.

5.3 Feature scaling
The collected features are frequently fundamentally different in scale; for instance,
price is likely to be much lower than trading volume. This can cause problems for
models which are scale-dependent: features with larger scales can dominate those with
smaller scales in calculations such as the inner product between feature vectors, and
cause numerical issues in the model (Hsu, Chang, Lin, et al. 2003). Models with reg-
ularization are also negatively impacted, as varying scales necessitate varying scales
of coefficients/weights of each feature. Additionally, scaling features to have zero
mean leads to faster convergence in the case of neural network models using back-
propagation (Y. A. LeCun et al. 2012).

2See Section 5.5 for discussions on nested cross-validation
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I used standard scaling (also known as ‘z-score normalisation’), defined as:

𝑥
(𝑛)
𝑖

=
𝑥
(𝑛)
𝑖

− x̄(𝑛)

𝜎(x(𝑛) )

where 𝑥
(𝑛)
𝑖

is the 𝑛-th component in the x𝑖 feature (row) vector, and x(𝑛) is the column
vector of the 𝑛-th component in all feature vectors in the training set.

Standard scaling is frequently used in practice, and some research has validated its
use in classification tasks (D. Singh and B. Singh 2020). Further, since this method
produces zero mean and unit variance, it is suitable for use in models that perform
better with these characteristics, such as support vector machines or linear classi-
fiers/regressors. Therefore, standard scaling was used for all models in this work.
Scaling parameters are determined from the training set, and used to transform both
the training set and the test set, so as to not utilise unseen information in training and
optimistically bias the results (information leakage).

In the context of non-stationary time series analysis, the validity of standard scal-
ing is questionable. Since it scales to the mean of features in the training set (and
means of non-stationary time series shift with time), the transformed test set can have a
vastly different distribution to the training set, leading to poor performance or violating
expectations (such as zero mean) of the model.

Several approaches have been proposed or utilised in lieu of standard scaling in
the context of financial time series analysis. Bollen, Mao, and Zeng (2011) assumed
a local mean and standard deviation within a sliding window centered around a point,
and performed z-score normalisation with respect to this; Jin et al. (2017) utilised a
similar approach, but with a trailing sliding window. Passalis, Tefas, et al. (2019)
and Passalis, Kanniainen, et al. (2021) propose approaches which adaptively normalise
time series data, in contrast to the scaling approaches described above which use fixed
parameters (e.g. the mean and standard deviation in standard scaling). Regrettably,
these approaches were not utilised in my project due to time constraints and realising
the issues of standard scaling for non-stationary time series late into development.

5.4 Models
In this section, I describe each of the models applied in the experiments, and the reason-
ing behind their use. A range of models are utilised in order to thoroughly investigate
the question of the predictive power of social media data, irrespectively of the limita-
tions of any individual model.

5.4.1 Baseline models
Constant

This model outputs the most frequent class label in the training set, and is only used for
trend prediction. This has the dual effect of demonstrating the balance of the data-set
while providing a reasonable baseline which must be beaten by the model if it is to be
of any use.

36



Naı̈ve

The Naı̈ve model predicts that the future value will be equal to the last seen observa-
tion. This baseline is used in the Makridakis competitions for time series forecasting
(Makridakis, Spiliotis, and Assimakopoulos 2020), and proved to be a strong baseline
against machine learning methods in the M4 competition.

For multi-horizon predictions, this model assumes that the value is the same for
every day on the horizon (i.e. a straight horizontal line).

5.4.2 Statistical models
I employ both ARIMA and exponential smoothing models in order to provide a strong
baseline of statistical models to compare the machine learning models against. These
models are used extensively in practice (Goodwin et al. 2010; Hyndman and Athana-
sopoulos 2018) and academia (Makridakis and Hibon 2000; Makridakis, Spiliotis, and
Assimakopoulos 2020), and hence should provide a very strong baseline.

ARIMA

The autoregressive integrated moving average (ARIMA) model is characterised by
three components (with parameters 𝑝, 𝑑, 𝑞):

• Autoregressive component, parameter 𝑝: assumes that the time series can be
modelled by a linear regression of its own past values; 𝑝 determines the number
of past values (lag window) to use in this regression.

• Integrated component, parameter 𝑑: since non-stationary time series have a
changing mean, it is beneficial to stabilise this mean via differencing the time
series. 𝑑 determines the degree of differencing, e.g. 𝑑 = 1 ⇒ 𝑦′𝑡 = 𝑦𝑡 − 𝑦𝑡−1;
𝑑 = 2 ⇒ 𝑦′′𝑡 = 𝑦′𝑡 − 𝑦′

𝑡−1, etc. Rather than using the raw values of the time se-
ries in the autoregression, these differenced values are used instead. Hence, a
differenced value is forecast; to convert this back to the original time series, the
forecast value is integrated (i.e. 𝑦𝑡+1 = 𝑦′

𝑡+1 + 𝑦𝑡 )

• Moving average component, parameter 𝑞: a moving average model assumes that
a time series is a linear combination of 𝑞 past and the current forecasting errors,
which are assumed to be normally distributed. I.e. 𝑦𝑡 = 𝑐 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 +
. . .+ 𝜃𝑞𝜖𝑡−𝑞 where 𝜃𝑖 are fitted coefficients, 𝜖𝑡 is the forecasting error for trading
day 𝑡, and 𝑐 is a constant (Hyndman and Athanasopoulos 2018).

ARIMA is thus a combination of an autoregressive model and a moving average
model, applied to a differenced version of the input time series.

Stationarity can be tested for with statistical tests such as the Augmented Dickey-
Fuller (ADF) test (Dickey and Fuller 1979) and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test (Kwiatkowski et al. 1992). Hence, the appropriate degree of differencing 𝑑

can be determined by using these tests under varying degrees of differencing. Table 5.3
shows the result of these tests on a single stock price time series for illustration.
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As proposed by Box and Jenkins (1970), the remaining 𝑝 and 𝑞 terms can be deter-
mined by looking at plots of autocorrelation and partial autocorrelation (autocorrelation
is the correlation between the time series and its own lagged values). The exact details
of this are beyond the scope of this project and omitted.

These processes for determining 𝑝, 𝑞, and 𝑑 underlie the ‘auto ARIMA’ model. In
the experiments, I use this, in addition to a manually-tuned ARIMA(6,1,0) model,
which was chosen from the results of Table 5.3 and some minor experimentation (ex-
amining error rates with different parameters).

The ARIMA models are fitted to the unlagged closing price of the stock to be
predicted. For determining trend predictions, the fitted ARIMA model is used to first
predict price up to the target horizon, and then the trend is computed from this (see
Section 3.2).

𝑑 ADF KPSS
Value 𝑝-value Value 𝑝-value

0 0.559 0.987 2.04 0.01
1 -16.1 5e-29 0.238 0.1
2 -7.01 7e-10 0.102 0.1

Table 5.3: Stationarity tests for $AAPL stock prices over the data-set period. p-values
≤ 1% are emboldened. Note that the null hypotheses of the two tests are opposite: in

ADF, the null hypothesis indicates that the series is non-stationary.

Exponential smoothing

While stock prices in general exhibit some form of seasonality, this seasonality is an-
nual in frequency and often manifests as increased prices in December–January (Wach-
tel 1942; M. N. Gultekin and N. B. Gultekin 1983). Thus, with a data-set of only one
year, I use exponential smoothing methods which do not incorporate seasonality com-
ponents (since the seasonality cannot be inferred from such a short period), but which
do incorporate trend (since stock prices do generally exhibit an upwards or downwards
trend).

Holt proposed an additive trend method, which can be described mathematically as
follows (Hyndman and Athanasopoulos 2018):

�̂�𝑡+ℎ = ℓ𝑡 + ℎ · 𝑏𝑡
ℓ𝑡 = 𝛼𝑦𝑡 + (1−𝛼) (ℓ𝑡−1 + 𝑏𝑡−1)
𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1− 𝛽)𝑏𝑡−1

Pegels (1969) proposed another method with a multiplicative trend, which is poten-
tially useful in the case of stock prices since it accounts for trends which are non-linear.
This is as follows:

�̂�𝑡+ℎ = ℓ𝑡 · ℎ · 𝑏𝑡
ℓ𝑡 = 𝛼𝑦𝑡 + (1−𝛼) (ℓ𝑡−1 · 𝑏𝑡−1)

𝑏𝑡 = 𝛽( ℓ𝑡

ℓ𝑡−1
) + (1− 𝛽)𝑏𝑡−1
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Gardner Jr and McKenzie (1985) proposed an improvement on Holt’s original
method to add ‘damping’ to the trend component in an attempt to address overshooting
exhibited by the additive trend at longer horizons. J. W. Taylor (2003) subsequently
applied this to the multiplicative trend ES model. Both cases are summarised by the
following equations:

�̂�𝑡+ℎ = ℓ𝑡 ∗ (ℎ · (𝑏𝑡 ⋄
ℎ∑︁
𝑖=1

𝜙𝑖))

ℓ𝑡 = 𝛼𝑦𝑡 + (1−𝛼) (ℓ𝑡−1 ∗ (𝑏𝑡−1 ⋄𝜙))
𝑏𝑡 = 𝛽(ℓ𝑡 ∗−1 ℓ𝑡−1) + (1− 𝛽)𝑏𝑡−1 ⋄𝜙

where ∗ is addition for additive trends and multiplication for multiplicative trends; ∗−1

is the inverse of ∗ (i.e. subtraction and division); and ⋄ is multiplication for additive
trends and exponentiation for multiplicative trends.

The exponential smoothing model used in the experiments is a combination of all of
the above approaches, treating the type of trend component (additive or multiplicative)
and whether to dampen the trend as hyper-parameters.

As with ARIMA, the model is fitted to the unlagged adjusted closing prices of the
stock, and used to compute price forecasts; trend is then computed from these price
forecasts in the case of stock trend prediction.

5.4.3 Machine learning models
For each machine learning model, the stock price and trend prediction problems are
converted into supervised learning problems as follows:

1. An input feature vector x𝑡 is formed for each trading day, using all 24 features
described in Section 5.1 for each day in a 1–5 trading day (inclusive) lag window,
forming in total a vector with 120 dimensions.

2. Input feature vectors are pre-processed with scaling (Section 5.3) and selec-
tion/extraction procedures (Section 5.2); the exact pre-processing used (and in
which order) is described in Section 5.6.

3. Output vectors/target labels y𝑡 /𝑦𝑡 are paired with each input feature vector. This
is the unlagged adjusted closing price for each trading day in the multi-horizon
stock price prediction, and the computed trend (1 or 0) for stock trend prediction.
E.g. for a 5-day (multi-)horizon:

y𝑡 =
[
𝑝𝑐 (𝑡) 𝑝𝑐 (𝑡 +1) 𝑝𝑐 (𝑡 +2) 𝑝𝑐 (𝑡 +3) 𝑝𝑐 (𝑡 +4)

]
for price prediction

𝑦𝑡 = 𝑇𝑟𝑒𝑛𝑑 (𝑡 −1,5) for trend prediction

In general, the price prediction problem is modelled as a regression problem, while the
trend prediction problem is modelled as a classification problem.

Of the discussed machine learning models, only CNN-RNN natively supports multi-
horizon forecasting. For the remaining models, multi-horizon forecasts are achieved by
training a separate instance of the model for each horizon within the multi-horizon.
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Support vector machine

The support vector machine (SVM) is a highly robust classification model. SVM works
by fitting a hyperplane in feature space to provided training data, such that the classes
of training data-points are separated by the hyperplane. This hyperplane is chosen with
a maximum margin, so that the two classes are maximally distant from the decision
boundary.

Since generally it will not be possible to construct a hyperplane which perfectly
separates the data, some misclassifications in training are allowed for in construction
of the hyperplane. To control the amount of permissible misclassifications, a hyper-
parameter 𝐶 is introduced, where a lower value of 𝐶 allows for more misclassifications,
and a higher value allows for fewer. However, a higher value of 𝐶 produces a narrower
margin and hence may lead to over-fitting.

This approach allows only for a linear decision function in feature space. To extend
this, non-linear kernels can be used to transform the feature space into an alternative
space in which the transformed data-points may be more easily separated by a (linear)
hyperplane. The so-called ‘kernel trick’ allows this transformation to be performed
implicitly, and instead the kernel need only define distances between two data-points
in feature space, i.e. a function 𝑘 (x,x′) (Burges 1998).

For trend prediction, I utilise one of the following three kernels for prediction (the
choice of which is treated as a hyper-parameter):

• Linear: 𝑘 (x,x′) = x ·x′ — i.e. no transformation.

• Radial basis function: 𝑘 (x,x′) = exp(−𝛾∥x− x′∥2) — a popular non-linear ker-
nel; 𝛾 forms a hyper-parameter.

• Sigmoid: 𝑘 (x,x′) = tanh(𝛾(x · x′) + 𝑟) — another popular kernel, inspired by
sigmoid activation functions in neural networks; 𝛾 and 𝑟 are hyper-parameters.

The same ideas of SVM can be applied in regression, leading to support vector
regression (SVR) (Smola and Schölkopf 2004). In SVR, a hyperplane w · x+ 𝑏 = �̂� is
fitted to the training data, such that the error of the training examples is at most 𝜖 . As
with SVM, slack is allowed for training examples which exceed this 𝜖 , and the total
allowed slack is controlled with 𝐶. 𝜖 forms an additional hyper-parameter.

Although I implemented an SVR model with RFE, this proved far too slow to train
(taking 30 minutes to train once for a single stock, which would need to be done 75
times for 66 stocks).

Random forest

A decision tree is a tree of decision nodes, which eventually lead to a leaf node of class
label or value. A single decision tree may be constructed for classification or regres-
sion, but is prone to over-fitting. Random forests (Breiman 2001) are an ensemble of
decision trees, which make use of bootstrap aggregating — a technique whereby the
training set is sampled with replacement to produce new training sets; each decision
tree is then trained with one of these new training sets, and the outputs are aggregated
by voting (classification) or averaging (regression). In addition, random forests use
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random subsets of input features to grow each tree, which reduces over-dependence on
a single feature and improves accuracy (Breiman 2001).

In constructing decision trees, random forests ‘split’ the training set at each decision
node; the feature used to split is chosen based on how well the split would separate
classes (classification) or reduce error (regression), and a local optima of this scoring
function is used to choose the value on which to split (‘cut-point’).

I use random forests for a number of reasons:

• they are resilient to the issues of multicollinearity discussed in Section 5.2

• they are parallelizable and fast to train

• they offer good performance out-of-the-box with minimal hyper-parameters

Random forests do have one notable hyper-parameter in the number of trees 𝑇 to
construct. In general, higher 𝑇 offers greater accuracy, but at increased computational
expense (Probst and Boulesteix 2017). Hence, I fix 𝑇 at 1,000 trees which seemed to
be the limit of feasible study with the available computational resources and time.

Extra-trees

Extremely randomised (‘extra’) trees (Geurts, Ernst, and Wehenkel 2006) is an varia-
tion of random forest, which instead trains each tree using the whole training set and
randomly chooses splits in decision tree nodes. That is, a random cut-point is gener-
ated for each feature uniformly between the feature’s minimum and maximum value in
the training set, and the best-scoring random split (feature and cut-point pair) is then
selected.

The benefits of extra-trees are:

• Lower risk of over-fitting (or more accurately, lower variance), due to randomiz-
ing both feature subsets used in each tree and cut-points.

• Faster training time, due to no local optimisation of cut-points: Geurts, Ernst,
and Wehenkel (ibid.) found that training times reduced on average by 64% for
classification, and 19% for regression.

Hence, I used extra-trees in an attempt to see whether an increase in accuracy/decrease
in error could be obtained over random forests with lower computational costs. Like
random forest, I used 1,000 trees in this model.

Gradient-boosted decision trees

‘Boosting’ refers to a family of algorithms whereby weak learners (such as decision
trees) are combined algorithmically into a ‘strong’ learner (Freund, Schapire, and Abe
1999). Gradient boosting (Natekin and Knoll 2013) iteratively combines weak learners,
such that each iteration produces a new weak learner which aims to correct the errors
of its predecessor. That is, the weak learner attempts to minimise loss in predicting the
residuals from the previous iteration. In gradient-boosted decision trees (GBDT), the
weak learner is the decision tree.
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I use the exponential loss function exp(−𝑦 �̂�) in the case of classification (this is
equivalent to the ‘Adaboost’ model), and the mean squared error in regression. Empir-
ically, I found these to yield the best accuracy/error rates (tested on a few stocks).

The number of iterations to perform is a hyper-parameter of the GBDT model; I set
this at 1,000, for equivalent reasons as in random forest.

ROCKET-Ridge

As introduced in Section 2.2, ROCKET (Dempster, Petitjean, and Webb 2020) trans-
forms time series with random convolutional kernels. This method achieved state-of-
the-art performance in time series classification and is extremely fast to run, and hence
I employ it here. While I did attempt to use this technique for stock price prediction
in addition to trend prediction, the error rate proved excessively high, and hence I fo-
cused instead on using it for trend prediction/time series classification, as the authors
intended.

I apply this transformation to the input feature vectors (as a multivariate time series)
as a feature extraction technique. Then, the transformed features are fed into a ridge
classifier, following the recommendations of the authors of ROCKET. Ridge classifica-
tion is an extension of ridge regression, which is itself a linear regression technique for
estimating regression coefficients when input features are highly correlated (Hilt and
Seegrist 1977); the extension of this technique to classification simply involves map-
ping class labels to {−1,1}, and taking the sign of the predicted value as the predicted
class label.

Ridge classification/regression involves a single hyper-parameter, 𝛼, which con-
trols the strength of the penalty applied to the large coefficients3; this penalty is a
regularization technique, which intends to prevent over-fitting. I tune 𝛼 using a grid
search method, as will be discussed in Section 5.5.

CNN-RNN

Taking inspiration from the successful time series classification algorithms of ROCKET
(Dempster, Petitjean, and Webb 2020) and HIVE-COTE (Lines, S. Taylor, and Bagnall
2016), I developed a neural network model with convolutional layers for feature ex-
traction. To process the resulting time series of extracted features, I use a (recurrent)
long short-term memory layer (LSTM) (Hochreiter and Schmidhuber 1997). LSTMs
have been utilised frequently to reasonable success for time series forecasting and clas-
sification due to their ability to process sequences and handle long-term dependencies
(Siami-Namini, Tavakoli, and Namin 2018; Karim et al. 2017), such as an event occur-
ring several days before a resultant change in stock price. While gated recurrent units
(Cho et al. 2014) have been proposed as a means to reduce training time compared
to LSTM, I did not find a substantial enough reduction to justify their use, and hence
LSTMs are used in this model instead.

After encoding the extracted features with an LSTM layer, the final hidden state is
given as the initial state for a decoder LSTM layer, which serves to output a sequence

3More specifically, this is the strength of 𝐿2 regularisation
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Figure 5.9: Architecture of the developed CNN-RNN model; 𝐻 is the horizon of the
given task, 𝑈 is a hyper-parameter of the number of units in each LSTM cell, and
𝐹1/𝐹2 are hyper-parameters of the number of filters to use in the convolutions.
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for multi-horizon forecasting. To decode its input, the decoder layer’s output is recur-
rently fed through prediction layers to produce a price forecast, and this is used as input
to the next LSTM cell. In the case of classification and next-day horizon forecasting,
only one LSTM cell is used.

To avoid the problem of information bottleneck, whereby the network is overly
reliant on information from the entire time series being encoded in the final LSTM en-
coder cell, I use an attention layer (Luong, Pham, and Manning 2015) with the encoder
layer outputs and the current decoder layer cell output as inputs. This has the effect
of reducing the bottleneck, by allowing the network to selectively pay attention to all
time-steps in the encoded time series, rather than just the final encoded time-step.

To decrease training time, I make use of teacher forcing (Williams and Zipser
1989): in training, the decoder layer’s inputs are given from a lagged version of the
intended output sequence. E.g. the first LSTM decoder cell is given 𝑝𝑐 (𝑡 − 1) as an
input, where the intended output is 𝑝𝑐 (𝑡).

Dropout is added before the final dense decoder layer and within the LSTM layers
for similar reasons as in multi-layer perceptron: namely, to prevent over-fitting. As the
complexity of a network increases, so too does the risk of over-fitting. Hence, very
aggressive dropout is used to discourage overfitting.

In contrast to the other machine learning models presented, this model uses 40
trading days of lagged input (i.e. each input sample is a matrix of input feature vectors
x𝑡−39,x𝑡−38, . . . ,x𝑡 ). This is because the network is designed to handle sequential data,
whereas I felt introducing such a large window to other models would impose too
great a computational cost, introduce irredeemable amounts of multicollinearity, and
not greatly benefit predictions (since the other ML models are not designed to handle
sequential data).

The hyper-parameters of the model are summarised in Table 5.4. Although I im-
plemented a hyper-tuning procedure for this model, I found it to be infeasible due to
the long training time inherent in such a large network. Therefore, I set the hyper-
parameters manually, after extensive informal experimentation. It should be noted that
these hyper-parameters will likely be sub-optimal, due to the small hyper-parameter
space examined.

Generally, large neural networks require many epochs to converge. Hence, I use
2000 epochs in trend prediction. In price prediction, I lower this to 250, since this uses
day forward-chaining (see Section 6.1.1), and thus involves re-training the model 75
times4 rather than 5 times, per stock.

430% * 252 trading days
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Hyper-parameter Trend prediction Price prediction
Convolutional layer 1 filters 256 256
Convolutional layer 1 filter size 3 3
Convolutional layer 2 filters 256 256
Convolutional layer 2 filter size 5 5
Convolutional layer padding Zero-padded Zero-padded
Convolutional layer activation ReLU ReLU
Max pooling filter size 2 2
Max pooling filter stride 2 2
Max pooling padding None None
Encoder LSTM units 256 256
Decoder LSTM units 256 256
Dense layer units 1 1
Dense layer activation Sigmoid Linear
Dropout 0.5 0.5
Learning rate 3e-4 5e-3
Epochs 2000 250
Loss function Binary cross-entropy Mean squared error
Optimizer Adam Adam

Table 5.4: Hyper-parameters used in the CNN-RNN model; these were not tuned due
to the computational expense/time that a suitable training procedure would require.

5.5 Hyperparameter tuning
Hyper-parameter choice is extremely important for model performance. Therefore, I
utilise hyper-parameter tuning techniques where possible. These techniques involve
evaluating the performance of the model under different hyper-parameter settings.

I use nested cross validation to obtain an estimate of the model’s performance with
a given set of hyper-parameter values, whereby cross validation is applied to the current
fold of an outer cross validation procedure (this outer procedure is described in Sec-
tion 6.1.1). Specifically, I use 5-fold time series cross validation, where the (reduced)
training set5 is divided into 5 folds and the model is trained separately for each fold;
the scores (accuracy or mean squared error) of each fold are then averaged to produce
an estimate of the model’s performance on unseen data. Successive folds are supersets
of the folds prior, reflecting the real-world usage of the model in which it would be
updated as new data becomes available. In time series cross validation, it is important
to retain the chronology of the data-set, so that future data is not used in training to
predict values occurring in the past; hence, the training set is not shuffled. Five folds
are chosen such that the time spent tuning hyper-parameters is feasible.

Nested cross validation avoids issues with bias in obtaining estimates of model
performance (Varma and Simon 2006; Cawley and Talbot 2010), and hence improves
the choice of hyper-parameter selection.

In the following sub-sections, the hyper-parameter tuning procedures applied to the

5i.e. the training set allocated to the current outer fold
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models are described, in addition to the specific models for which they are applied and
the range of values for each hyper-parameter used.

5.5.1 Grid search
Grid search is the simplest hyper-parameter tuning algorithm, and simply involves a
brute-force search over some space of hyper-parameters. I use this approach in models
for which it is feasible to do so. These models, and the set of hyper-parameters used
(the combinations evaluated are the Cartesian product of these sets) are as follows:

• Exponential smoothing

– Trend: {Additive,Multiplicative,None}
– Trend dampening: {True,False} (not used when trend is None)

• Support vector machine (trend prediction)

– 𝐶: logspace(−1,2,50)
– Kernel: {Sigmoid,RBF,Linear}
– 𝛾: { 1

120 ,
1

120Var(x𝑡 )) }

• Support vector machine (price prediction)

– 𝐶: logspace(−2,2,50)
– Kernel: fixed at Linear6

– 𝜖 : logspace(−3,−1,25)

• ROCKET-Ridge

– 𝛼: logspace(−3,3,40)

where the logspace(𝑎, 𝑏, 𝑛) function returns 𝑛 logarithmically-spaced values in [10𝑎,10𝑏].

5.5.2 Hyperband tuning
Neural network models are in general expensive to train. This fact combined with
the large hyper-parameter spaces makes grid search generally infeasible. A common
approach is to use Bayesian Optimization (Shahriari et al. 2015), which models the
function yielding model performance given hyper-parameter settings probabilistically.
However, I opted instead to use Hyperband (Li et al. 2017), which has been shown to
be around 5×–30× faster than Bayesian Optimization.

6I initially investigated RBF and Sigmoid kernels additionally, however this proved far too slow for
the size of C that was requried to yield adequate results. Scikit-Learn provides a separate linear SVM
implementation which was far faster than the implementation supporting other kernels, hence I limited the
kernel to linear.
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Hyperband is an extension of the ‘successive halving’ algorithm (Jamieson and Tal-
walkar 2016), which successively discards the worst-performing half of a set of hyper-
parameter configurations and allocates exponentially more of a ‘resource’ to the eval-
uations of subsequent halves. In neural network hyper-parameter tuning, this resource
is the number of epochs (and therefore training time). The set of hyper-parameter con-
figurations is derived by uniformly sampling the hyper-parameter space, and (this is
the contribution of Hyperband) the size of the set is varied to yield different trade-offs
of number of configurations vs. average resources used per configuration (where the
same finite budget of epochs is allocated to each set).

The hyper-parameter spaces used in the neural network models are as follows: (un-
less stated otherwise, these spaces are sampled logarithmically)

• CNN-RNN7

– Number of convolutional layers: [1,3] ∈ N (sampled linearly)

– Convolutional layer 𝑖 number of filters: [8,512] ∈ N
– Convolutional layer 𝑖 filter size: {2𝑛+1 | 𝑛 ∈ N∧0 ≤ 𝑛 ≤ 5}
– Encoder/decoder LSTM units: [8,512] ∈ N
– Learning rate: [10−4,10−1] ∈ R
– Dropout: [0,0.4] ∈ R

5.6 Summary of models

Type Model Pre-processing Hyper-parameter tuning

Baseline N/A N/A N/A
Naı̈ve N/A N/A

Statistical ARIMA - -
Exponential smoothing - Grid search

ML SVM Standard scaling → RFE
or PCA (trend pred.), RFE
(price pred.)

Grid search

Random forest Standard scaling -
Extra-trees Standard scaling -
GBDT Standard scaling -
ROCKET-Ridge ROCKET → Standard scal-

ing
Grid search

CNN-RNN Standard scaling Hyperband/manual8

7This tuning procedure was not used in the experiments, since I did not have sufficient computational
resources/time to perform it for all stocks/horizons under consideration; however, it is given here for com-
pleteness.

8Implemented Hyperband tuning for this instance, but manual was used in the experiments due to re-
source constraints
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Chapter 6

Experiments

6.1 Experimental design

6.1.1 Evaluation
In line with standard machine learning practice, the data-set is split into training and
test sets; the performance is evaluated on the test sets, and these performances are
averaged in order to produce an estimate of how well the model would generalise to
unseen/real-world data.

As the data-set is a time series, care is taken not to shuffle the data-set, which could
produce an unfair estimate by incorporating data from the future in training. However,
this means that conventional techniques such as hold-out (where the data-set is split
into a single training set and test set, often at a ratio of 70:30) would most likely be
unsuitable, because the time period covered in testing would be excessively short (due
to the small 252 trading day data-set): e.g. consider the case where a company has a
good period of profits, and stock price rises consistently for a month or two; then, a
model always predicting ‘up’ could obtain reasonable performance estimates.

To address this issue, I use time series 𝑘-fold cross-validation for trend prediction,
which has a much greater temporal coverage than a hold-out method, and is generally
well-suited for smaller data-sets. Day-forward chaining with a small initial training set
size may have been better suited (e.g. a 30:70 ratio instead of a 70:30 ratio), however
this was beyond the realm of feasibility in the resource constraints1.

Price prediction does not suffer from the same issues of temporal coverage, since
this task is generally difficult regardless (and especially so with multi-horizon fore-
casting). Hence, in this case I use day forward-chaining (sometimes referred to as
‘walk-forward validation’) with a 70:30 split, which more accurately reflects practical
usage (i.e. in practice, the model would be trained daily).

Note that all pre-processing steps described are fitted to each training set, and used
to transform the test set; e.g. with standard scaling, the mean is computed from the
current test set under consideration. Through this method, information from the test

170% · 252 · 188 stocks · 3 minutes to train one fold for all classification models per stock = 69 days
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set remains unseen, and does not leak into any stage of the model training. Likewise,
nested cross-validation is used in hyper-parameter tuning; 5-fold time series cross-
validation is used to ensure the smallest training set used in hyper-parameter tuning is
sufficiently large and to keep time spent tuning/training to a minimum.

Time series 𝑘-fold cross-validation

Time series cross-validation splits the data-set into 𝑘 training and test sets such that
each training set is a superset of the last, as shown in Figure 6.1. This enables a range
of training set sizes to be evaluated, and hence a more robust estimate of performance
is obtained.

Figure 6.1: Illustration of time series cross-validation

I select 𝑘 = 5 to balance training time and the minimum size of the training set
(noting that CNN-RNN requires at least 40 days, and there are 252 days in the entire
data-set).

Day forward-chaining

Day forward-chaining is another cross-validation technique (Hyndman and Athana-
sopoulos (2018) refer to this as ‘time series cross-validation’, though it is also referred
to as ‘day forward-chaining’ (Aminanto et al. 2020) or ‘walk-forward validation’ or
‘rolling forecast’ (Siami-Namini, Tavakoli, and Namin 2018)), whereby a minimum
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training set size is selected and the test set is the single day following this training set;
then, the training set is expanded by one day and this process repeats until there are no
days left.

6.1.2 Stock selection
Using the entire 4,612 stock data-set would inevitably yield poor trend and prediction
results, as not every stock is discussed on Twitter, and nor are they discussed in equal
amounts. However, limiting the stock selection to some threshold number of tweets
also does not make sense, as volume of tweets does not necessarily imply predictive
power (e.g. many tweets could be uninformative noise). Moreover, since a symbol in a
tweet may refer to a stock or cryptocurrency (with no good way of determining which),
the vast majority of tweets for a given symbol could be completely uncorrelated with
the stock price.

To more fairly and usefully select stocks, I designed an experiment whereby the
Pearson correlation is computed between all sentiment features within a [1,5]-day lag
window, and the stock closing price. The maximum correlation is then extracted and
assigned to the stock, and only stocks with a best correlation above some threshold
are used in the prediction experiments. Thus, a useful estimate of performance of the
models is obtained (since a user/trader is unlikely to use the models for stocks which it
evidently is unlikely to work for, and it is unrealistic to expect the models to work for
every stock when the data is simply inadequate).

6.1.3 Evaluation metrics
To obtain a numerical estimate of performance, I use a variety of metrics which are
commonly used in regression, classification, and time series forecasting. These are
detailed below.

Trend prediction

Accuracy Proportion of correct classifications; this is not well suited to unbalanced
classes, however I provide the Constant model as a baseline for comparison. This
metric also allows comparison to related works, which generally use accuracy.

Matthews correlation coefficient (MCC) A metric suited to unbalanced classes,
which takes into account all elements of the confusion matrix (true positives, true neg-
atives, etc.). It is defined as:

MCC =
TP ·TN−FP ·FN√︁

(TP+FP) · (TP+FN) · (TN+FP) · (TN+FN)

I use this in preference to F1 score, as F1 does not take into account true negatives at
all, which should be of equal importance to true positives in a stock trend prediction
task. Chicco and Jurman (2020) argue in favour of using MCC over F1 and accuracy
in binary classification tasks in general.
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Price prediction

Symmetric mean absolute percentage error (sMAPE) While mean absolute per-
centage error (MAPE) is commonly used as a forecasting error metric, it is asymmetric,
“favoring estimates that are below actual values” (Armstrong 1985). The symmetric
MAPE addresses this issue, and was used in the M3 and M4 competitions (Makridakis
and Hibon 2000; Makridakis, Spiliotis, and Assimakopoulos 2020). It is commonly
defined as:

sMAPE = 100 · 1
𝑛

𝑛∑︁
𝑖=1

| �̂�𝑖 − 𝑦𝑖 |
|𝑦𝑖 | + | �̂�𝑖 |

although note that a factor of 1
2 is omitted from the denominator (contrary to Arm-

strong’s definition), to ensure the values are between 0 to 100%.

Relative squared error (RSE) Used as an alternative to the root mean square error,
the RSE is comparable across multiple stocks: root mean square error (and mean ab-
solute error) are dependent on the scale of the data, and thus since stock prices vary
wildly between stocks, it is nonsensical to compute an average of these metrics over
many stocks. The relative squared error accounts for varying scales, and is defined as
(Botchkarev 2018):

RSE =

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2

(𝑦𝑖 − �̄�)2

Mean absolute scaled error (MASE) Used in M4 and propsed as the “standard
measure for forecast accuracy” by Hyndman and Koehler (2006), the MASE computes
the forecasting error relative to the in-sample naı̈ve forecast. It is defined as:

MASE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − �̂�𝑖 |
1

𝑚−1
∑𝑚

𝑗=2 |𝑦′𝑗 − 𝑦′
𝑗−1 |

where 𝑦′
𝑗

are the true in-sample (i.e. training) price values

6.2 Results

6.2.1 Stock sentiment correlations
Figures 6.2–6.4 summarise the results of this experiment, which was run on all 4,612
stocks. In total, 66 stocks had 𝑟 ≥ 0.5, and 188 stocks had 𝑟 ≥ 0.4. As can be seen from
Figure 6.2, the spread of correlation values is quite large even at the same number of
tweets, thus supporting the use of using a threshold based on 𝑟 rather than the number
of tweets.

Figure 6.3 shows that BERTweet was the most correlated feature marginally more
often than VADER or Tweet count. However, the proportion of each sentiment feature
type is fairly similar, supporting the value of using complementary feature types rather
than focusing on a single sentiment analysis approach.
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Figure 6.2: Highest Pearson correlation coefficients between any sentiment feature
and stock closing price for all stocks

Figure 6.4 shows that the 1 and 5-trading day lagged sentiment features were gen-
erally the best correlated with the closing price. This supports the idea of using a lag
window; however, it remains an open question as to whether 5 trading days was an
sufficiently large window.
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Figure 6.3: Distribution of the most correlated sentiment feature type over the stocks
in the data-set

Figure 6.4: Distribution of the most correlated sentiment feature lag (in trading days)
over the stocks in the data-set
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6.2.2 Stock trend prediction
The threshold of 𝑟 ≥ 0.4 was chosen to determine stocks to test, yielding 188 stocks;
this was chosen based on computational expense and practicability.

Table 6.1 summarises the main results of the trend prediction experiment. All mod-
els failed to out-perform the Constant baseline accuracy on the 𝐻 = 1 and 𝐻 = 5 hori-
zons, however best accuracies of 58.1% and 73.9% were obtained by CNN-RNN and
Extra-Trees on the 𝐻 = 20 and 𝐻 = 65 horizons. Although almost all machine learning
models out-performed statistical models in terms of accuracy for all horizons, ARIMA
models consistently had the highest MCC scores, and hence these predictions were
likely of higher quality on average (Chicco and Jurman 2020).

Omissions: CNN-RNN is omitted for 𝐻 = 65 due to exhausting the Google Cloud
Platform free trial credits.

Table 6.1: Main results of the stock trend prediction experiment, with mean scores
over 188 stocks (those with 𝑟 ≥ 0.4). Bold indicates highest scoring model.

6.2.3 Stock price prediction
The threshold of 𝑟 ≥ 0.5 was chosen for this experiment, yielding 66 stocks. This
higher threshold was chosen due to the greater computational expense of multi-horizon
forecasting, particularly under models where one instance of the model was trained per
horizon.

Table 6.2 summarises the results of the experiment. In general, prediction quality
was poor; no models were able to achieve lower error rates than the Naı̈ve baseline at
the 1-trading-day horizon, and no machine learning models beat the performance of
statistical models at 𝐻 = 1 or 𝐻 = 5. However, all but one machine learning model
obtained a substantial reduction in error over the statistical models at the 𝐻 = 20 multi-
horizon, suggesting that these models may be more useful for month or longer multi-
horizon forecasting.
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Model 𝐻 = 1 𝐻 = 5 𝐻 = 20
sMAPE RSE MASE sMAPE RSE MASE sMAPE RSE MASE

Naı̈ve 2.63 0.114 1.35 4.64 0.359 2.41 9.65 1.507 4.21

ARIMA(6, 1, 0) 2.79 0.126 1.49 3.16 0.239 1.82 8.21 1.320 3.94
Auto-ARIMA 2.81 0.127 1.46 3.48 0.279 1.88 9.36 1.507 4.25
Exp. smoothing 2.67 0.121 1.42 4.68 0.367 2.44 9.84 1.665 4.38

Random forest 3.72 0.245 1.92 4.99 0.497 2.39 7.02 1.295 2.95
Extra-Trees 3.44 0.189 1.74 4.21 0.281 2.01 5.22 0.478 2.23
GBDT 3.85 0.313 1.89 4.95 0.546 2.29 6.62 1.241 2.78
CNN-RNN - - - 5.55 0.650 2.98 8.46 2.027 4.11

Table 6.2: Main results of the stock price prediction experiment, with mean scores
over 66 stocks.

Omissions: Support vector regression was not attempted for all stocks, due to lack
of resources. 𝐻 = 65 was not investigated due to insufficient resources and data (this
would be just 9 days in the test set). CNN-RNN was not used for 𝐻 = 1 due to running
out of Google Cloud Platform credit.

6.3 Discussion and evaluation
ML models performed better at longer horizons At the 20 and 65-trading-day
horizons, the machine learning models achieved excellent accuracies of 58.1% (1.8%
better than Constant; 9.5% better than any statistical model) and 73.9%; generally,
56% is reported as a satisfying result (T. H. Nguyen, Shirai, and Velcin 2015). At such
long horizons, random fluctuations and noise in stock prices are dwarfed by the overall
stock trend. Hence, models should achieve better accuracies at longer horizons. The
higher accuracy of ML models over statistical models at longer horizons is likely due
to the inherent simplicity of statistical models at long horizons: e.g. ARIMA with 1
degree of differencing tends to a straight line or constant at long horizons (Hyndman
and Athanasopoulos 2018), but ML models can represent far more complex trends.
However, statistical models achieved higher MCCs at every horizon, and this metric
should perhaps be the point of focus, rather than accuracy (Chicco and Jurman 2020).

Ensemble methods out-perform individual ML methods As evidenced by the suc-
cess of HIVE-COTE (Lines, S. Taylor, and Bagnall 2016), ensemble methods generally
perform well in time series classification tasks. Ensemble models generally perform
well under noise due to the aggregation of votes/predictions, and hence are well-suited
to stock trend and price prediction, where noise is inherent in both the stock market
and social media sentiment data. Additionally, the ensemble methods used required no
hyper-parameter tuning, and therefore issues of over-fitting in this process were circum-
vented — contrary to ROCKET-Ridge and SVM, which were generally out-performed

55



by random forest.

Comparison with results of M4 M4 (Makridakis, Spiliotis, and Assimakopoulos
2020) found that 4/5 machine learning models studied were unable to exceed the per-
formance of the naı̈ve forecast. At a 1-trading-day horizon, this proved to be the case,
however in stock price prediction, the ML models consistently out-performed Naı̈ve
at the 5 and 20 trading-day horizons (excluding CNN-RNN, which performed poorly
in general). Performance did not come close at any horizon to the best-performing
method in M4 (a hybrid method), which had a MASE of 1.54; this seems to reaffirm
the superiority of hybrid methods to ML methods in general.

Poor performance of CNN-RNN in price prediction The CNN-RNN model was
a complex model with over one million parameters. Additionally, aggressive dropout
was applied in the network. Consequently, a large number of epochs would be required
for the network to converge. From the results of the price prediction experiment, 250
epochs was decidedly too low in this instance. I would expect performance to greatly
improve with a number such as 2,000 epochs, however given that day forward-chaining
with a 70:30 split was used (each model is trained 252× 30% = 75 times), this was
unfortunately outside the realm of feasibility.

Poor sentiment correlations In general, sentiment correlations were quite poor (see
Figure 6.2). A large reason in this was likely the discarding of tweet data on non-trading
days, which may have had very valuable information for prediction. Additionally, a
more intelligent aggregation of tweet sentiments to trading day sentiments would likely
yield better correlation and prediction results. Finally, although single-symbol tweets
comprised a majority of the data-set (Figure 5.4), a aspect-sentiment based approach
would have enabled the use of multi-symbol tweets, perhaps improving correlations
and prediction results.

Interpretability A potentially important factor of stock trend/price prediction mod-
els is interpretability: investors/traders would greatly benefit from understanding why a
prediction model is telling them to invest in or sell a particular stock. Regrettably, this
property is lacking in the developed models (with the minor exception of SVM with a
linear kernel), and hence this forms a limitation of this work.
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Chapter 7

Conclusions

Stock market prediction is, overall, a challenging problem. In this work, I have pre-
sented the data collection, methods, and experimental evaluation in attempting to har-
ness social media data for this task. Stock discussion on social media was investigated
on a large scale, with 4,612 stocks analysed, and 9M tweets collected. State-of-the-
art sentiment analysis techniques were used, and a variety of features were extracted
borrowing from both technical analysis and sentiment analysis stock prediction ap-
proaches. A range of ML models were used to provide a comprehensive comparison to
traditional statistical models such as ARIMA and exponential smoothing, and a care-
fully designed experimentation was presented to estimate the performance of these
models in practice and attempt to test the EMH.

With trend prediction accuracies scarcely exceeding 50%, and price prediction er-
rors exceeding that of the Naive model at the 1 and 5 trading-day horizons, there is
some evidence to support the Efficient Market Hypothesis. However, further investiga-
tion is needed to firmly rule out the value of social media data. Additionally, satisfying
results were achieved at the 20 trading-day and longer horizons with the developed
machine learning models, which is not strictly consistent with the Efficient Market
Hypothesis.

Machine learning models did not out-perform statistical models in trend or price
prediction, save for a minor advantage in 20 trading-day price prediction. As Lim and
Zohren (2021) point out in their excellent survey of time series forecasting with deep
learning, the likely causes of this are a proclivity to over-fit — which is especially so
with a reasonably small data-set of 252 trading days — and the potential sensitivity
of ML models to feature scaling, as discussed in Section 6.3. Overall, the results ob-
tained are in line with the findings of M4, and Hyndman and Athanasopoulos (2018)’s
observation that “some forecasting methods are extremely simple and surprisingly ef-
fective”.

There were several limitations in this work, which could be addressed in future
work. Firstly, sentiment data on non-trading-days was discarded, which likely had a
strong negative impact on prediction performance; to remedy this, better trading day
alignment strategies could be employed, such as those used by Xu and Cohen (2018),
Makrehchi, Shah, and Liao (2013), and Sprenger et al. (2014). Secondly, tweets with
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more than one symbol mention were discarded, due to the nature of the sentiment
analysis approach used. While T. H. Nguyen, Shirai, and Velcin (2015) investigated a
aspect-sentiment approach, BERT could be investigated for topic or aspect-based sen-
timent analysis in the context of stock prediction with social media. Thirdly, standard
scaling of features was used, which likely impacted the performance of the ML mod-
els due to the inherent non-stationarity in stock market prices (Section 5.3). Passalis,
Tefas, et al. (2019) and Passalis, Kanniainen, et al. (2021) propose alternative scaling
approaches designed for time series data, which may yield far improved stock predic-
tion performance. Finally, although the maximum amount of data was collected given
the time constraints, the 252 trading days of data was potentially insufficient, particu-
larly for neural network models with many parameters such as CNN-RNN. To remedy
this, a longer time period could be studied, or the use of higher-frequency data (such
as hourly stock price data) could be investigated.

As M4 demonstrated, hybrid models are the future of time series analysis. More
research is needed to investigate the use of hybrid models for stock price/trend predic-
tion; this could incorporate both the power of traditional techniques such as exponential
smoothing, and the complexity of machine learning techniques such as RNNs.
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